(CS144: Introduction to Computer Networking Winter 2024

Lab Checkpoint 1: stitching substrings into a byte stream

Due: Tuesday, January 23, 3 p.m.

Collaboration Policy: Same as checkpoint 0.

0 Overview

For Checkpoint 0, you used an Internet stream socket to fetch information from a website and
send an email message, using Linux’s built-in implementation of the Transmission Control
Protocol (TCP). This TCP implementation managed to produce a pair of reliable in-order
byte streams (one from you to the server, and one in the opposite direction), even though
the underlying network only delivers “best-effort” datagrams. By this we mean: short
packets of data that can be lost, reordered, altered, or duplicated. You also implemented the
byte-stream abstraction yourself, in memory within one computer. Over the coming weeks,
you’ll implement TCP yourself, to provide the byte-stream abstraction between a pair of
computers separated by an unreliable datagram network.

*Why am I doing this? Providing a service or an abstraction on top of a different
less-reliable service accounts for many of the interesting problems in networking. Over
the last 40 years, researchers and practitioners have figured out how to convey all kinds
of things—messaging and e-mail, hyperlinked documents, search engines, sound and
video, virtual worlds, collaborative file sharing, digital currencies—over the Internet.
TCP’s own role, providing a pair of reliable byte streams using unreliable datagrams, is
one of the classic examples of this. A reasonable view has it that TCP implementations
count as the most widely used nontrivial computer programs on the planet.

The lab assignments will ask you to build up a TCP implementation in a modular way.
Remember the ByteStream you just implemented in Checkpoint 07 In the coming labs, you’ll
end up convey two of them across the network: an “outbound” ByteStream, for data that a
local application writes to a socket and that your TCP will send to the peer, and an “inbound”
ByteStream for data coming from the peer that will be read by a local application.

1 Getting started

Your implementation of TCP will use the same Minnow library that you used in Checkpoint
0, with additional classes and tests. To get started:

1. Make sure you have committed all your solutions to Checkpoint 0. Please don’t modify
any files outside of the src directory, or webget.cc. You may have trouble merging
the Checkpoint 1 starter code otherwise.

2. While inside the repository for the lab assignments, run to retrieve the

most recent version of the lab assignments.

(CS144: Introduction to Computer Networking Winter 2024

3. Download the starter code for Checkpoint 1 by running ’ git merge origin/checkl-startercode|.

(If you have renamed the “origin” remote to be something else, you might need to use

a different name here, e.g. ’git merge upstream/checkl-startercode ‘)

4. Make sure your build system is properly set up: |cmake -S . -B build]

5. Compile the source code: | cmake —-build build]

6. Open and start editing the writeups/checkl.md file. This is the template for your lab
writeup and will be included in your submission.

2 Putting substrings in sequence

As part of the lab assignment, you will implement a TCP receiver: the module that receives
datagrams and turns them into a reliable byte stream to be read from the socket by the
application—just as your webget program read the byte stream from the webserver in
Checkpoint 0.

The TCP sender is dividing its byte stream up into short segments (substrings no more than
about 1,460 bytes apiece) so that they each fit inside a datagram. But the network might
reorder these datagrams, or drop them, or deliver them more than once. The receiver must
reassemble the segments into the contiguous stream of bytes that they started out as.

In this lab you’ll write the data structure that will be responsible for this reassembly: a
Reassembler. It will receive substrings, consisting of a string of bytes, and the index of the
first byte of that string within the larger stream. Each byte of the stream has its own
unique index, starting from zero and counting upwards. As soon as the Reassembler knows
the next byte of the stream, it will write it to the Writer side of a ByteStream— the same
ByteStream you implemented in checkpoint 0. The Reassembler’s “customer” can read from
the Reader side of the same ByteStream.

Here’s what the interface looks like:

// Insert a new substring to be reassembled into a ByteStream.
void insert(uint64_t first_index, std::string data, bool is_last_substring);

// How many bytes are stored in the Reassembler itself?
uint64_t bytes_pending() const;

// Access output stream reader
Reader& reader();

(CS144: Introduction to Computer Networking Winter 2024

*Why am I doing this? TCP robustness against reordering and duplication comes
from its ability to stitch arbitrary excerpts of the byte stream back into the original
stream. Implementing this in a discrete testable module will make handling incoming
segments easier.

The full (public) interface of the reassembler is described by the Reassembler class in the
reassembler.hh header. Your task is to implement this class. You may add any private
members and member functions you desire to the Reassembler class, but you cannot change
its public interface.

2.1 What should the Reassembler store internally?

The insert method informs the Reassembler about a new excerpt of the ByteStream, and
where it fits in the overall stream (the index of the beginning of the substring).

In principle, then, the Reassembler will have to handle three categories of knowledge:

1. Bytes that are the next bytes in the stream. The Reassembler should push these to
the stream (output_.writer()) as soon as they are known.

2. Bytes that fit within the stream’s available capacity but can’t yet be written, because
earlier bytes remain unknown. These should be stored internally in the Reassembler.

3. Bytes that lie beyond the stream’s available capacity. These should be discarded. The
Reassembler’s will not store any bytes that can’t be pushed to the ByteStream either
immediately, or as soon as earlier bytes become known.

The goal of this behavior is to limit the amount of memory used by the Reassembler
and ByteStream, no matter how the incoming substrings arrive. We’ve illustrated this in the
picture below. The “capacity” is an upper bound on both:

1. The number of bytes buffered in the reassembled ByteStream (shown in green), and

2. The number of bytes that can be used by “unassembled” substrings (shown in red)

(CS144: Introduction to Computer Networking Winter 2024

width: capacity

. T , , first unacceptable index
first unpopped index first unassembled index

| 7 e 3 —
T |
stream start

(index 0) width: available capacity

bytes (substrings) in the Reassembler's internal storage

bytes buffered in the ByteStream

. bytes that have been popped already

You may find this picture useful as you implement the Reassembler and work through the
tests—it’s not always natural what the “right” behavior is.

2.2 FAQs

o What is the index of the first byte in the whole stream? Zero.

e How efficient should my implementation be? The choice of data structure is again
important here. Please don’t take this as a challenge to build a grossly space- or
time-inefficient data structure—the Reassembler will be the foundation of your TCP
implementation. You have a lot of options to choose from.

We have provided you with a benchmark; anything greater than 0.1 Gbit/s (100 megabits
per second) is acceptable. A top-of-the-line Reassembler will achieve 10 Gbit/s.

e How should inconsistent substrings be handled? You may assume that they don’t
exist. That is, you can assume that there is a unique underlying byte-stream, and all
substrings are (accurate) slices of it.

o What may I use? You may use any part of the standard library you find helpful. In
particular, we expect you to use at least one data structure.

(CS144: Introduction to Computer Networking Winter 2024

o When should bytes be written to the stream? As soon as possible. The only situation in
which a byte should not be in the stream is that when there is a byte before it that has
not been “pushed” yet.

o May substrings provided to the insert () function overlap? Yes.

o Will I need to add private members to the Reassembler? Yes. Substrings may arrive in
any order, so your data structure will have to “remember” substrings until they’re ready
to be put into the stream—that is, until all indices before them have been written.

e [s it okay for our re-assembly data structure to store overlapping substrings? No. It
is possible to implement an “interface-correct” reassembler that stores overlapping
substrings. But allowing the re-assembler to do this undermines the notion of “capacity”
as a memory limit. If the caller provides redundant knowledge about the same index,
the Reassembler should only store one copy of this information.

o Will the Reassembler ever use the Reader side of the ByteStream? No—that’s for the
external customer. The Reassembler uses the Writer side only.

e How many lines of code are you expecting? When we run ./scripts/lines-of-code
on the starter code, it prints:

ByteStream: 82 lines of code
Reassembler: 26 lines of code

and when we run it on our solutions, it prints:

ByteStream: 111 lines of code
Reassembler: 85 lines of code

So a reasonable implementation of the Reassembler might be about 50-60 lines of code
for the Reassembler (on top of the starter code).

e More FAQs: For more, please see https://cs144.github.io/lab_faq.html.

3 Development and debugging advice

1. You can test your code (after compiling it) With‘ cmake --build build --target checkl|

2. Please re-read the section on “using Git” in the Lab 0 document, and remember to
keep the code in the Git repository it was distributed in on the main branch. Make
small commits, using good commit messages that identify what changed and why.

3. Please work to make your code readable to the CA who will be grading it for style and
soundness. Use reasonable and clear naming conventions for variables. Use comments
to explain complex or subtle pieces of code. Use “defensive programming”—explicitly

https://cs144.github.io/lab_faq.html

(CS144: Introduction to Computer Networking Winter 2024

check preconditions of functions or invariants, and throw an exception if anything is ever
wrong. Use modularity in your design—identify common abstractions and behaviors
and factor them out when possible. Blocks of repeated code and enormous functions
will make it hard to follow your code.

4. Please also keep to the “Modern C++" style described in the Checkpoint 0 document.
The cppreference website (https://en.cppreference.com) is a great resource, although
you won't need any sophisticated features of C++ to do these labs. (You may sometimes
need to use the move () function to pass an object that can’t be copied.)

5. If you get your builds stuck and aren’t sure how to fix them, you can erase your build
directory ((rm -rf build|—please be careful not to make a typo as this will erase
whatever you tell it), and then run |cmake -S . -B build] again.

4 Submit

1. In your submission, please only make changes to the .hh and .cc files in the src
directory. Within these files, please feel free to add private members as necessary, but
please don’t change the public interface of any of the classes.

2. Before handing in any assignment, please run these in order:

(a) Make sure you have committed all of your changes to the Git repository. You
can run to make sure there are no outstanding changes. Remember:
make small commits as you code.

(b) ‘cmake --build build --target format‘ (to normalize the coding style)

(c) ‘cmake --build build --target checkl‘ (to make sure the automated tests
pass)
(d) Optional: ‘cmake --build build --target tidy‘ (suggests improvements to

follow good C++ programming practices)

3. Write a report in writeups/checkl.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

(a) Structure and Design. Describe the high-level structure and design choices
embodied in your code. You don’t need to discuss in detail what you inherited from
the starter code. Use this as an opportunity to highlight important design aspects
and provide greater detail on those areas for your grading TA to understand.
We encourage discussions of alternatives considered or evaluated, and benefits
of weaknesses of your design compared with alternatives — perhaps in terms of
simplicity /complexity, risk of bugs, asymptotic performance, empirical perfor-
mance, required implementation time and difficulty, and other factors. Include any
measurements if applicable. You are strongly encouraged to make this writeup

https://en.cppreference.com

(CS144: Introduction to Computer Networking Winter 2024

as readable as possible by using subheadings and outlines. Please do not simply
translate your program into an paragraph of English.

(b) Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?

(¢c) Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

4. In your writeup, please also fill in the number of hours the assignment took you and
any other comments.

5. The mechanics of “how to turn it in” will be announced before the deadline.

6. Please let the course staff know ASAP of any problems at the lab session, or by posting
a question on Ed. Good luck!

	Overview
	Getting started
	Putting substrings in sequence
	What should the Reassembler store internally?
	FAQs

	Development and debugging advice
	Submit

