
CS144: Introduction to Computer Networking Winter 2024

Lab Checkpoint 2: the TCP receiver

Due: Tuesday, January 30, 3 p.m.

Collaboration Policy: Same as checkpoint 0. Please do not look at other students’ code or
solutions to past versions of these assignments. Please fully disclose any collaborators or any
gray areas in your writeup—disclosure is the best policy.

0 Overview

Suggestion: read the whole lab document before implementing.

In Checkpoint 0, you implemented the abstraction of a flow-controlled byte stream (ByteStream).
And in Checkpoint 1, you created a Reassembler that accepts a sequence of substrings, all
excerpted from the same byte stream, and reassembles them back into the original stream.

These modules will prove useful in your TCP implementation, but nothing in them was
specific to the details of the Transmission Control Protocol. That changes now. In Checkpoint
2, you will implement the TCPReceiver, the part of a TCP implementation that handles the
incoming byte stream.

The TCPReceiver receives messages from the peer’s sender (via the receive() method) and
turns them into calls to a Reassembler, which eventually writes to the incoming ByteStream.
Applications read from this ByteStream, just as you did in Lab 0 by reading from the
TCPSocket.

Meanwhile, the TCPReceiver also generates messages that go back to the peer’s sender, via
the send() method. These “receiver messages” are responsible for telling the sender:

1. the index of the “first unassembled” byte, which is called the “acknowledgment number”
or “ackno.” This is the first byte that the receiver needs from the sender.

2. the available capacity in the output ByteStream. This is called the “window size”.

Together, the ackno and window size describe describes the receiver’s window: a range of
indexes that the TCP sender is allowed to send. Using the window, the receiver can control
the flow of incoming data, making the sender limit how much it sends until the receiver is
ready for more. We sometimes refer to the ackno as the “left edge” of the window (smallest
index the TCPReceiver is interested in), and the ackno + window size as the “right edge”
(just beyond the largest index the TCPReceiver is interested in).

You’ve already done most of the algorithmic work involved in implementing the TCPReceiver
when you wrote the Reassembler and ByteStream; this lab is about wiring those general
classes up to the details of TCP. The hardest part will involve thinking about how TCP will
represent each byte’s place in the stream—known as a “sequence number.”



CS144: Introduction to Computer Networking Winter 2024

1 Getting started

Your implementation of a TCPReceiver will use the same Minnow library that you used in
Checkpoints 0 and 1, with additional classes and tests. To get started:

1. Make sure you have committed all your solutions to Checkpoint 1. Please don’t modify
any files outside the top level of the src directory, or webget.cc. You may have trouble
merging the Checkpoint 1 starter code otherwise.

2. While inside the repository for the lab assignments, run git fetch --all to retrieve
the most recent version of the lab assignment.

3. Download the starter code for Checkpoint 2 by running git merge origin/check2-startercode .

(If you have renamed the “origin” remote to be something else, you might need to use

a different name here, e.g. git merge upstream/check2-startercode .)

4. Make sure your build system is properly set up: cmake -S . -B build

• Note for arm64 (UTM) Mac users: The g++ 13 “sanitizers” (bug checkers)
seem to run very slow on arm64. Minnow uses these to run the tests. If you are
on an arm64 Mac, please configure cmake to use a different compiler:

cmake -S . -B build -DCMAKE CXX COMPILER=clang++

5. Compile the source code: cmake --build build

6. Open and start editing the writeups/check2.md file. This is the template for your lab
writeup and will be included in your submission.

2 Checkpoint 2: The TCP Receiver

TCP is a protocol that reliably conveys a pair of flow-controlled byte streams (one in each
direction) over unreliable datagrams. Two parties, or “peers,” participate in the TCP
connection, and each peer acts as both “sender” (of its own outgoing byte stream) and
“receiver” (of an incoming byte stream) at the same time.

This week, you’ll implement the “receiver” part of TCP, responsible for receiving messages
from the sender, reassembling the byte stream (including its ending, when that occurs), and
determining that messages that should be sent back to the sender for acknowledgment and
flow control.

⋆Why am I doing this? These signals are crucial to TCP’s ability to provide the
service of a flow-controlled, reliable byte stream over an unreliable datagram network.
In TCP, acknowledgment means, “What’s the index of the next byte that the receiver
needs so it can reassemble more of the ByteStream?” This tells the sender what bytes
it needs to send or resend. Flow control means, “What range of indices is the receiver
interested and willing to receive?” (a function of its available capacity). This tells the
sender how much it’s allowed to send.



CS144: Introduction to Computer Networking Winter 2024

2.1 Translating between 64-bit indexes and 32-bit seqnos

As a warmup, we’ll need to implement TCP’s way of representing indexes. Last week you
created a Reassembler that reassembles substrings where each individual byte has a 64-bit
stream index, with the first byte in the stream always having index zero. A 64-bit index is
big enough that we can treat it as never overflowing.1 In the TCP headers, however, space
is precious, and each byte’s index in the stream is represented not with a 64-bit index but
with a 32-bit “sequence number,” or “seqno.” This adds three complexities:

1. Your implementation needs to plan for 32-bit integers to wrap around.
Streams in TCP can be arbitrarily long—there’s no limit to the length of a ByteStream
that can be sent over TCP. But 232 bytes is only 4 GiB, which is not so big. Once a
32-bit sequence number counts up to 232 − 1, the next byte in the stream will have the
sequence number zero.

2. TCP sequence numbers start at a random value: To improve robustness and
avoid getting confused by old segments belonging to earlier connections between the
same endpoints, TCP tries to make sure sequence numbers can’t be guessed and are
unlikely to repeat. So the sequence numbers for a stream don’t start at zero. The first
sequence number in the stream is a random 32-bit number called the Initial Sequence
Number (ISN). This is the sequence number that represents the “zero point” or the
SYN (beginning of stream). The rest of the sequence numbers behave normally after
that: the first byte of data will have the sequence number of the ISN+1 (mod 232), the
second byte will have the ISN+2 (mod 232), etc.

3. The logical beginning and ending each occupy one sequence number: In
addition to ensuring the receipt of all bytes of data, TCP makes sure that the beginning
and ending of the stream are received reliably. Thus, in TCP the SYN (beginning-of-
stream) and FIN (end-of-stream) control flags are assigned sequence numbers. Each of
these occupies one sequence number. (The sequence number occupied by the SYN flag
is the ISN.) Each byte of data in the stream also occupies one sequence number. Keep
in mind that SYN and FIN aren’t part of the stream itself and aren’t “bytes”—they
represent the beginning and ending of the byte stream itself.

These sequence numbers (seqnos) are transmitted in the header of each TCP segment. (And,
again, there are two streams—one in each direction. Each stream has separate sequence
numbers and a different random ISN.) It’s also sometimes helpful to talk about the concept
of an “absolute sequence number” (which always starts at zero and doesn’t wrap), and
about a “stream index” (what you’ve already been using with your Reassembler: an index
for each byte in the stream, starting at zero).

To make these distinctions concrete, consider the byte stream containing just the three-letter
string ‘cat’. If the SYN happened to have seqno 232 − 2, then the seqnos, absolute seqnos,
and stream indices of each byte are:

1Transmitting at 100 gigabits/sec, it would take almost 50 years to reach 264 bytes. By contrast, it takes
only a third of a second to reach 232 bytes.



CS144: Introduction to Computer Networking Winter 2024

element syn c a t fin
seqno 232 − 2 232 − 1 0 1 2

absolute seqno 0 1 2 3 4
stream index 0 1 2

The figure shows the three different types of indexing involved in TCP:

Sequence Numbers Absolute Sequence Numbers Stream Indices
• Start at the ISN • Start at 0 • Start at 0
• Include SYN/FIN • Include SYN/FIN • Omit SYN/FIN
• 32 bits, wrapping • 64 bits, non-wrapping • 64 bits, non-wrapping
• “seqno” • “absolute seqno” • “stream index”

Converting between absolute sequence numbers and stream indices is easy enough—just add
or subtract one. Unfortunately, converting between sequence numbers and absolute sequence
numbers is a bit harder, and confusing the two can produce tricky bugs. To prevent these
bugs systematically, we’ll represent sequence numbers with a custom type: Wrap32, and
write the conversions between it and absolute sequence numbers (represented with uint64 t).
Wrap32 is an example of a wrapper type: a type that contains an inner type (in this case
uint32 t) but provides a different set of functions/operators.

We’ve defined the type for you and provided some helper functions (see wrapping integers.hh),
but you’ll implement the conversions in wrapping integers.cc:

1. static Wrap32 Wrap32::wrap( uint64 t n, Wrap32 zero point )

Convert absolute seqno → seqno. Given an absolute sequence number (n) and an
Initial Sequence Number (zero point), produce the (relative) sequence number for n.

2. uint64 t unwrap( Wrap32 zero point, uint64 t checkpoint ) const

Convert seqno → absolute seqno. Given a sequence number (the Wrap32), the
Initial Sequence Number (zero point), and an absolute checkpoint sequence number,
find the corresponding absolute sequence number that is closest to the checkpoint.

Note: A checkpoint is required because any given seqno corresponds to many absolute
seqnos. E.g. with an ISN of zero, the seqno “17” corresponds to the absolute seqno of
17, but also 232 + 17, or 233 + 17, or 233 + 232 + 17, or 234 + 17, or 234 + 232 + 17, etc.
The checkpoint helps resolve the ambiguity: it’s an absolute seqno that the user of this
class knows is “in the ballpark” of the correct answer. In your TCP implementation,
you’ll use the first unassembled index as the checkpoint.

Hint: The cleanest/easiest implementation will use the helper functions provided in
wrapping integers.hh. The wrap/unwrap operations should preserve offsets—two
seqnos that differ by 17 will correspond to two absolute seqnos that also differ by 17.

Hint #2: We’re expecting one line of code for wrap, and less than 10 lines of code for
unwrap. If you find yourself implementing a lot more than this, it might be wise to step
back and try to think of a different strategy.

https://github.com/CS144/minnow/blob/lab2-startercode/libminnow/wrapping_integers.hh
https://github.com/CS144/minnow/blob/lab2-startercode/libminnow/wrapping_integers.cc
https://github.com/CS144/minnow/blob/lab2-startercode/libminnow/wrapping_integers.hh


CS144: Introduction to Computer Networking Winter 2024

You can test your implementation by running the tests: cmake --build build --target check2 .

2.2 Implementing the TCP receiver

Congratulations on getting the wrapping and unwrapping logic right! We’ll shake your hand
(or, post-covid, elbow-bump) if this victory happens at the lab session. In the rest of this
lab, you’ll be implementing the TCPReceiver. It will (1) receive messages from its peer’s
sender and reassemble the ByteStream using a Reassembler, and (2) send messages back to
the peer’s sender that contain the acknowledgment number (ackno) and window size. We’re
expecting this to take about 15 lines of code in total.

First, let’s review the format of a TCP “sender message,” which contains the information
about the ByteStream. These messages are sent from a TCPSender to its peer’s TCPReceiver:

/*

* The TCPSenderMessage structure contains five fields (minnow/util/tcp_sender_message.hh):

*

* 1) The sequence number (seqno) of the beginning of the segment. If the SYN flag is set,

* this is the sequence number of the SYN flag. Otherwise, it's the sequence number of

* the beginning of the payload.

*

* 2) The SYN flag. If set, this segment is the beginning of the byte stream, and the seqno field

* contains the Initial Sequence Number (ISN) -- the zero point.

*

* 3) The payload: a substring (possibly empty) of the byte stream.

*

* 4) The FIN flag. If set, the payload represents the ending of the byte stream.

*

* 5) The RST (reset) flag. If set, the stream has suffered an error and the connection

* should be aborted.

*/

struct TCPSenderMessage

{

Wrap32 seqno { 0 };

bool SYN {};

std::string payload {};

bool FIN {};

bool RST {};

// How many sequence numbers does this segment use?

size_t sequence_length() const { return SYN + payload.size() + FIN; }

};



CS144: Introduction to Computer Networking Winter 2024

The TCPReceiver generates its own messages back to the peer’s TCPSender:

/*

* The TCPReceiverMessage structure contains three fields (minnow/util/tcp_receiver_message.hh):

*

* 1) The acknowledgment number (ackno): the *next* sequence number needed by the TCP Receiver.

* This is an optional field that is empty if the TCPReceiver hasn't yet received the

* Initial Sequence Number.

*

* 2) The window size. This is the number of sequence numbers that the TCP receiver is interested

* to receive, starting from the ackno if present. The maximum value is 65,535 (UINT16_MAX from

* the <cstdint> header).

*

* 3) The RST (reset) flag. If set, the stream has suffered an error and the connection

* should be aborted.

*/

struct TCPReceiverMessage

{

std::optional<Wrap32> ackno {};

uint16_t window_size {};

bool RST {};

};

Your TCPReceiver’s job is to receive one of these kinds of messages and send the other:

class TCPReceiver

{

public:

// Construct with given Reassembler

explicit TCPReceiver( Reassembler&& reassembler ) : reassembler_( std::move( reassembler ) ) {}

// The TCPReceiver receives TCPSenderMessages from the peer's TCPSender.

void receive( TCPSenderMessage message );

// The TCPReceiver sends TCPReceiverMessages to the peer's TCPSender.

TCPReceiverMessage send() const;

// Access the output (only Reader is accessible non-const)

const Reassembler& reassembler() const { return reassembler_; }

Reader& reader() { return reassembler_.reader(); }

const Reader& reader() const { return reassembler_.reader(); }

const Writer& writer() const { return reassembler_.writer(); }

private:

Reassembler reassembler_;

};



CS144: Introduction to Computer Networking Winter 2024

2.2.1 receive()

This is method will be called each time a new segment is received from the peer’s sender.
This method needs to:

• Set the Initial Sequence Number if necessary. The sequence number of the first-
arriving segment that has the SYN flag set is the initial sequence number. You’ll want
to keep track of that in order to keep converting between 32-bit wrapped seqnos/acknos
and their absolute equivalents. (Note that the SYN flag is just one flag in the header.
The same message could also carry data or have the FIN flag set.)

• Push any data to the Reassembler. If the FIN flag is set in a TCPSegment’s header,
that means that the last byte of the payload is the last byte of the entire stream.
Remember that the Reassembler expects stream indexes starting at zero; you will have
to unwrap the seqnos to produce these.

3 Development and debugging advice

1. Implement the TCPReceiver’s public interface (and any private methods or functions
you’d like) in the file tcp receiver.cc. You may add any private members you like to
the TCPReceiver class in tcp receiver.hh.

2. You can test your code with cmake --build build --target check2 .

3. Please re-read the section on “using Git” in the Lab 0 document, and remember to
keep the code in the Git repository it was distributed in on the main branch. Make
small commits, using good commit messages that identify what changed and why.

4. Please work to make your code readable to the CA who will be grading it for style.
Use reasonable and clear naming conventions for variables. Use comments to explain
complex or subtle pieces of code. Use “defensive programming”—explicitly check
preconditions of functions or invariants, and throw an exception if anything is ever
wrong. Use modularity in your design—identify common abstractions and behaviors
and factor them out when possible. Blocks of repeated code and enormous functions
will make your code harder to follow.

5. Please also keep to the “Modern C++” style described in the Checkpoint 0 document.
The cppreference website (https://en.cppreference.com) is a great resource, although
you won’t need any sophisticated features of C++ to do these labs.

4 Submit

1. In your submission, please only make changes to the .hh and .cc files in the src

directory. Within these files, please feel free to add private members as necessary, but
please don’t change the public interface of any of the classes.

https://en.cppreference.com


CS144: Introduction to Computer Networking Winter 2024

2. Before handing in any assignment, please run these in order:

(a) Make sure you have committed all of your changes to the Git repository. You
can run git status to make sure there are no outstanding changes. Remember:
make small commits as you code.

(b) cmake --build build --target format (to normalize the coding style)

(c) cmake --build build --target check2 (to make sure the automated tests

pass)

(d) Optional: cmake --build build --target tidy (suggests improvements to

follow good C++ programming practices)

3. Write a report in writeups/check2.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

(a) Program Structure and Design. Describe the high-level structure and design
choices embodied in your code. You do not need to discuss in detail what you
inherited from the starter code. Use this as an opportunity to highlight important
design aspects and provide greater detail on those areas for your grading TA to
understand. You are strongly encouraged to make this writeup as readable as
possible by using subheadings and outlines. Please do not simply translate your
program into an paragraph of English.

(b) Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?

(c) Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

4. In your writeup, please also fill in the number of hours the assignment took you and
any other comments.

5. Please let the course staff know ASAP of any problems at the lab session, or by posting
a question on Ed. Good luck!

5 Extra Credit

Extra credit will be rewarded for improvements to the test suite. Add a test case to one of
the files in the tests directory (e.g. minnow/tests/recv connect.cc) that catches a real
bug that somebody might reasonably make that isn’t already caught by the existing test



CS144: Introduction to Computer Networking Winter 2024

suite. Please submit your test as a Pull Request (it’s okay to make this public) so we can
take a look and decide whether to add it to the overall testsuite. (This opportunity will
remain open—e.g. if you find a good additional test for the Reassembler in week 7, that’s
great too.)


	Overview
	Getting started
	Checkpoint 2: The TCP Receiver
	Translating between 64-bit indexes and 32-bit seqnos
	Implementing the TCP receiver
	receive()


	Development and debugging advice
	Submit
	Extra Credit

