
CS144: Introduction to Computer Networking Winter 2025

Lab Checkpoint 3: the TCP sender

Due: Sunday, Feb. 9, 11:59 p.m. (late deadline: Feb. 12, 7 p.m.)

Collaboration Policy: Same as checkpoint 0. Please do not look at other students’ code or
solutions to past versions of these assignments. Please fully disclose any collaborators or any
gray areas in your writeup—disclosure is the best policy.

0 Overview

Suggestion: read the whole lab document before implementing.

In Checkpoint 0, you implemented the abstraction of a flow-controlled byte stream (ByteStream).
In Checkpoints 1 and 2, you implemented the tools that translate from segments carried in
unreliable datagrams to an incoming byte stream: the Reassembler and TCPReceiver.

Now, in Checkpoint 3, you’ll implement the other side of the connection. The TCPSender

is a tool that translates from an outbound byte stream to segments that will become the
payloads of unreliable datagrams. Finally, in Checkpoint 4, you’ll combine your work from
the previous to labs to create a working TCP implementation: a TCPPeer that contains a
TCPSender and TCPReceiver. You’ll use this to talk to a classmate and to peers across the
Internet—real servers that speak TCP.

1 Getting started

Your implementation of a TCPSender will use the same Minnow library that you used in
Checkpoints 0–2, with additional classes and tests. To get started:

1. Make sure you have committed all your solutions to Checkpoint 1. Please don’t modify
any files outside the top level of the src directory, or webget.cc. You may have trouble
merging the Checkpoint 1 starter code otherwise.

2. While inside the repository for the lab assignments, run git fetch --all to retrieve
the most recent version of the lab assignment.

3. Download the starter code for Checkpoint 3 by running git merge origin/check3-startercode .

(If you have renamed the “origin” remote to be something else, you might need to use

a different name here, e.g. git merge upstream/check3-startercode .)

4. Make sure your build system is properly set up: cmake -S . -B build

5. Compile the source code: cmake --build build

6. Open and start editing the writeups/check3.md file. This is the template for your lab
writeup and will be included in your submission.

CS144: Introduction to Computer Networking Winter 2025

7. Reminder: please make frequent small commits in your local Git repository as you
work. If you need help to make sure you’re doing this right, please ask a classmate or
the teaching staff for help. You can use the git log command to see your Git history.

2 Checkpoint 3: The TCP Sender

TCP is a protocol that reliably conveys a pair of flow-controlled byte streams (one in each
direction) over unreliable datagrams. Two party participate in the TCP connection, and
each party is a peer of the other. Each peer acts as both “sender” (of its own outgoing
byte-stream) and “receiver” (of an incoming byte-stream) at the same time.

This week, you’ll implement the “sender” part of TCP, responsible for reading from a
ByteStream (created and written to by some sender-side application), and turning the stream
into a sequence of outgoing TCP segments. On the remote side, a TCP receiver1 transforms
those segments (those that arrive—they might not all make it) back into the original byte
stream, and sends acknowledgments and window advertisements back to the sender.

It will be your TCPSender’s responsibility to:

• Keep track of the receiver’s window (receiving incoming TCPReceiverMessages with
their acknos and window sizes)

• Fill the window when possible, by reading from the ByteStream, creating new TCP
segments (including SYN and FIN flags if needed), and sending them. The sender should
keep sending segments until either the window is full or the outbound ByteStream has
nothing more to send.

• Keep track of which segments have been sent but not yet acknowledged by the receiver—
we call these “outstanding” segments

• Re-send outstanding segments if enough time passes since they were sent, and they
haven’t been acknowledged yet

⋆Why am I doing this? The basic principle is to send whatever the receiver will allow
us to send (filling the window), and keep retransmitting until the receiver acknowledges
each segment. This is called “automatic repeat request” (ARQ). The sender divides the
byte stream up into segments and sends them, as much as the receiver’s window allows.
Thanks to your work last week, we know that the remote TCP receiver can reconstruct
the byte stream as long as it receives each index-tagged byte at least once—no matter
the order. The sender’s job is to make sure the receiver gets each byte at least once.

1It’s important to remember that the receiver can be any implementation of a valid TCP receiver—it
won’t necessarily be your own TCPReceiver. One of the valuable things about Internet standards is how
they establish a common language between endpoints that may otherwise act very differently.

CS144: Introduction to Computer Networking Winter 2025

2.1 How does the TCPSender know if a segment was lost?

Your TCPSender will be sending a bunch of TCPSenderMessages. Each will contain a (possibly-
empty) substring from the outgoing ByteStream, indexed with a sequence number to indicate
its position in the stream, and marked with the SYN flag at the beginning of the stream, and
FIN flag at the end.

In addition to sending those segments, the TCPSender also has to keep track of its outstanding
segments until the sequence numbers they occupy have been fully acknowledged. Periodically,
the owner of the TCPSender will call the TCPSender’s tick method, indicating the passage
of time. The TCPSender is responsible for looking through its collection of outstanding
TCPSenderMessages and deciding if the oldest-sent segment has been outstanding for too long
without acknowledgment (that is, without all of its sequence numbers being acknowledged).
If so, it needs to be retransmitted (sent again).

Here are the rules for what “outstanding for too long” means.2 You’re going to be implement-
ing this logic, and it’s a little detailed, but we don’t want you to be worrying about hidden
test cases trying to trip you up or treating this like a word problem on the SAT. We’ll give
you some reasonable unit tests this week, and fuller integration tests in Lab 4 once you’ve
finished the whole TCP implementation. As long as you pass those tests 100% and your
implementation is reasonable, you’ll be fine.

⋆Why am I doing this? The overall goal is to let the sender detect when segments
go missing and need to be resent, in a timely manner. The amount of time to wait
before resending is important: you don’t want the sender to wait too long to resend a
segment (because that delays the bytes flowing to the receiving application), but you
also don’t want it to resend a segment that was going to be acknowledged if the sender
had just waited a little longer—that wastes the Internet’s precious capacity.

1. Every few milliseconds, your TCPSender’s tick method will be called with an argument
that tells it how many milliseconds have elapsed since the last time the method was
called. Use this to maintain a notion of the total number of milliseconds the TCPSender
has been alive. Please don’t try to call any “time” or “clock” functions from
the operating system or CPU—the tick method is your only access to the passage of
time. That keeps things deterministic and testable.

2. When the TCPSender is constructed, it’s given an argument that tells it the “initial
value” of the retransmission timeout (RTO). The RTO is the number of milliseconds
to wait before resending an outstanding TCP segment. The value of the RTO will
change over time, but the “initial value” stays the same. The starter code saves the
“initial value” of the RTO in a member variable called initial RTO ms .

2These are based on a simplified version of the “real” rules for TCP: RFC 6298, recommendations 5.1
through 5.6. The version here is a bit simplified, but your TCP implementation will still be able to talk with
real servers on the Internet.

CS144: Introduction to Computer Networking Winter 2025

3. You’ll implement the retransmission timer: an alarm that can be started at a certain
time, and the alarm goes off (or “expires”) once the RTO has elapsed. We emphasize
that this notion of time passing comes from the tick method being called—not by
getting the actual time of day.

4. Every time a segment containing data (nonzero length in sequence space) is sent
(whether it’s the first time or a retransmission), if the timer is not running, start it
running so that it will expire after RTO milliseconds (for the current value of RTO).
By “expire,” we mean that the time will run out a certain number of milliseconds in
the future.

5. When all outstanding data has been acknowledged, stop the retransmission timer.

6. If tick is called and the retransmission timer has expired:

(a) Retransmit the earliest (lowest sequence number) segment that hasn’t been fully
acknowledged by the TCP receiver. You’ll need to be storing the outstanding
segments in some internal data structure that makes it possible to do this.

(b) If the window size is nonzero:

i. Keep track of the number of consecutive retransmissions, and increment it
because you just retransmitted something. Your TCPConnection will use this
information to decide if the connection is hopeless (too many consecutive
retransmissions in a row) and needs to be aborted.

ii. Double the value of RTO. This is called “exponential backoff”—it slows down
retransmissions on lousy networks to avoid further gumming up the works.

(c) Reset the retransmission timer and start it such that it expires after RTO millisec-
onds (taking into account that you may have just doubled the value of RTO!).

7. When the receiver gives the sender an ackno that acknowledges the successful receipt
of new data (the ackno reflects an absolute sequence number bigger than any previous
ackno):

(a) Set the RTO back to its “initial value.”

(b) If the sender has any outstanding data, restart the retransmission timer so that it
will expire after RTO milliseconds (for the current value of RTO).

(c) Reset the count of “consecutive retransmissions” back to zero.

You might choose to implement the functionality of the retransmission timer in a separate
class, but it’s up to you. If you do, please add it to the existing files (tcp sender.hh and
tcp sender.cc).

CS144: Introduction to Computer Networking Winter 2025

2.2 Implementing the TCP sender

Okay! We’ve discussed the basic idea of what the TCP sender does (given an outgoing
ByteStream, split it up into segments, send them to the receiver, and if they don’t get
acknowledged soon enough, keep resending them). And we’ve discussed when to conclude
that an outstanding segment was lost and needs to be resend.

Now it’s time for the concrete interface that your TCPSender will provide. There are four
important events that it needs to handle:

1. void push(const TransmitFunction& transmit);

The TCPSender is asked to fill the window from the outbound byte stream: it reads
from the stream and sends as many TCPSenderMessages as possible, as long as there
are new bytes to be read and space available in the window. It sends them by calling
the provided transmit() function on them.

You’ll want to make sure that every TCPSenderMessage you send fits fully inside the
receiver’s window. Make each individual message as big as possible, but no bigger than
the value given by TCPConfig::MAX PAYLOAD SIZE.

You can use the TCPSenderMessage::sequence length() method to count the total
number of sequence numbers occupied by a segment. Remember that the SYN and
FIN flags also occupy a sequence number each, which means that they occupy space in
the window.

⋆What should I do if the window size is zero? If the receiver has announced
a window size of zero, the push method should pretend like the window size is
one. The sender might end up sending a single byte that gets rejected (and not
acknowledged) by the receiver, but this can also provoke the receiver into sending
a new acknowledgment segment where it reveals that more space has opened up
in its window. Without this, the sender would never learn that it was allowed to
start sending again.
This is the only special-case behavior your implementation should
have for the case of a zero-size window. The TCPSender shouldn’t actually
remember a false window size of 1. The special case is only within the push
method. Also, N.B. that even if the window size is one (or 20, or 200), the window
might still be full. A “full” window is not the same as a “zero-size” window.

2. void receive(const TCPReceiverMessage& msg);

A message is received from the receiver, conveying the new left (= ackno) and right (=
ackno + window size) edges of the window. The TCPSender should look through its
collection of outstanding segments and remove any that have now been fully acknowl-
edged (the ackno is greater than all of the sequence numbers in the segment).

3. void tick(uint64 t ms since last tick, const TransmitFunction& transmit);

CS144: Introduction to Computer Networking Winter 2025

Time has passed — a certain number of milliseconds since the last time this method
was called. The sender may need to retransmit an outstanding segment; it can call the
transmit() function to do this. (Reminder: please don’t try to use real-world “clock”
or “gettimeofday” functions in your code; the only reference to time passing comes
from the ms since last tick argument.)

4. TCPSenderMessage make empty message() const;

The TCPSender should generate and send a zero-length message with the sequence
number set correctly. This is useful if the peer wants to send a TCPReceiverMessage

(e.g. because it needs to acknowledge something from the peer’s sender) and needs to
generate a TCPSenderMessage to go with it.

Note: a segment like this one, which occupies no sequence numbers, doesn’t need to be
kept track of as “outstanding” and won’t ever be retransmitted.

To complete Checkpoint 3, please review the full interface in src/tcp sender.hh implement
the complete TCPSender public interface in the tcp sender.hh and tcp sender.cc files. We
expect you’ll want to add private methods and member variables, and possibly a helper class.

2.3 FAQs and special cases

• What should my TCPSender assume as the receiver’s window size before the receive
method informs it otherwise?

One.

• What do I do if an acknowledgment only partially acknowledges some outstanding
segment? Should I try to clip off the bytes that got acknowledged?

A TCP sender could do this, but for purposes of this class, there’s no need to get fancy.
Treat each segment as fully outstanding until it’s been fully acknowledged—all of the
sequence numbers it occupies are less than the ackno.

• If I send three individual segments containing “a,” “b,” and “c,” and they never get
acknowledged, can I later retransmit them in one big segment that contains “abc”? Or
do I have to retransmit each segment individually?

Again: a TCP sender could do this, but for purposes of this class, no need to get fancy.
Just keep track of each outstanding segment individually, and when the retransmission
timer expires, send the earliest outstanding segment again.

• Should I store empty segments in my “outstanding” data structure and retransmit them
when necessary?

No—the only segments that should be tracked as outstanding, and possibly retransmit-
ted, are those that convey some data—i.e. that consume some length in sequence space.
A segment that occupies no sequence numbers (no SYN, payload, or FIN) doesn’t need
to be remembered or retransmitted.

CS144: Introduction to Computer Networking Winter 2025

• Where can I read if there are more FAQs after this PDF comes out?

Please check the website (https://cs144.github.io/lab faq.html) and Ed regularly.

3 Development and debugging advice

1. Implement the TCPSender’s public interface (and any private methods or functions
you’d like) in the file tcp sender.cc. You may add any private members you like to
the TCPSender class in tcp sender.hh.

2. You can test your code with cmake --build build --target check3 .

3. Please re-read the section on “using Git” in the Checkpoint 0 document, and remember
to keep the code in the Git repository it was distributed in on the main branch. Make
small commits, using good commit messages that identify what changed and why.

4. Please work to make your code readable to the CA who will be grading it for style.
Use reasonable and clear naming conventions for variables. Use comments to explain
complex or subtle pieces of code. Use “defensive programming”—explicitly check
preconditions of functions or invariants, and throw an exception if anything is ever
wrong. Use modularity in your design—identify common abstractions and behaviors
and factor them out when possible. Blocks of repeated code and enormous functions
will make it hard to follow your code.

4 Hands-on activity

Congratulations—you have made a fully working implementation of the Transmission Control
Protocol, implementations of which are arguably the most prevalent computer program on
the planet. It’s time to take a victory lap! You’ll communicate with Linux’s TCP and with
a lab partner, and then you’ll modify your webget (from checkpoint 0) to use your TCP
implementation. In your writeup, describe what you did, answer the questions below, and
try to find something interesting to discuss!

4.1 Experiments within your own VM

We’ve given you a client program (./build/apps/tcp ipv4) that uses your TCPSender
and TCPReceiver to speak TCP-over-IP over the Internet.3 We’ve also given you a similar
program (./build/apps/tcp native) that uses a Linux TCPSocket.

The big question: Can your TCP implementation (tcp ipv4) interoperate with Linux’s TCP
(tcp native)?

3If you’re curious how this program works, the tcp peer.hh and tcp over ip.cc files are probably the
interesting part of how we glued your TCPSender/TCPReceiver into a conforming TCP peer.

https://cs144.github.io/lab_faq.html

CS144: Introduction to Computer Networking Winter 2025

4.1.1 Have Linux’s TCP talk to itself

• First, let’s do the boring part of making sure Linux’s TCP implementation can talk to
itself. Run Linux’s TCP as a “server” (the peer that waits for an incoming SYN segment),

listening on port 9090. On your VM, run: ./build/apps/tcp native -l 0 9090

• Next, try using Linux’s TCP as the “client”: the peer that initiates the connection by
sending the first SYN segment to the server. In another terminal window on your VM,
run: ./build/apps/tcp native 169.254.144.1 9090

• If all goes well, the “server” will print something like DEBUG: New connection from

169.254.144.1:36568 and the “client” will print something like DEBUG: Connecting

to 169.254.144.1:9090... DEBUG: Successfully connected to 169.254.144.1:9090.

• Try typing into each window, and you will see the same bytes on the other window.

• To end a stream, type ctrl -D (on a line by itself) to close the ByteStream Writer in that
direction. If all goes well, you’ll see Outbound stream...finished on the terminal
where you typed the ctrl -D, and Inbound stream...finished on the other terminal.
Notice that the other peer can keep sending to the “closed” peer—each direction of
the stream can be closed independently, without preventing the other direction from
continuing.

• Now end the stream in the second direction by typing ctrl-D (on a line by itself) in the
other terminal. If all went well, both programs will quit and bring you back to the
command line in both terminals. This indicates the TCP connection has finished in
both directions (as discussed in class, Linux will “linger” in the background before
reusing one of the port numbers to reduce the chance of a “two general’s problem”).

4.1.2 Have your TCP talk to Linux’s

Repeat the above steps, but connect your TCP implementation to Linux’s. First, run sudo

./scripts/tun.sh start 144 to give your implementation permission to send raw Internet
datagrams without needing to be root. You’ll have to rerun this command any time you
reboot your VM.

Then, rerun the above experiment, replacing one of the programs (the client or server) with
tcp ipv4 (which is your TCP implementation). Does the connection still get established as
before, and can each peer still type at the other and have the text appear on the other peer’s
window? If so, pat yourself on the back (and we’ll shake your hand)—you’ve earned it! If
not. . . time to start debugging. You can capture the TCP segments with a command like
sudo rm -f /tmp/capture.raw; sudo tcpdump -n -w /tmp/capture.raw -i tun144 --print --packet-buffered ;
the resulting /tmp/capture.raw file can be visualized in wireshark as before.

After you’ve typed a little in each direction, try closing one of the ByteStreams and keep
typing a little in the other direction. Do both programs quit cleanly after both streams have

CS144: Introduction to Computer Networking Winter 2025

finished with a ctrl-D ? They should—although you may need to see tcp ipv4 wait a little to
reduce the chance of a “two general’s problem.” When does it need to wait (when it’s the
first to close or the second to close)? Does this match what was discussed in class?

4.1.3 Try to pass the “one megabyte challenge”

Once it looks like you can have a basic conversation, try sending a file between tcp ipv4

(your TCP) and tcp native (Linux’s TCP).

To create a random file that’s 12345 bytes as “/tmp/big.txt”:

dd if=/dev/urandom bs=12345 count=1 of=/tmp/big.txt

You can choose the direction of transmission—i.e. whether the client or server is the one to
send the file.

To have the server send the file as soon as it accepts an incoming connection, redirect
standard input to read from the file:
./build/apps/tcp native -l 0 9090 < /tmp/big.txt

To have the client receive the file, close off its outgoing stream by redirecting from /dev/null,
and redirect standard output to a second file named “/tmp/big-received.txt”:

</dev/null ./build/apps/tcp ipv4 169.254.144.1 9090 > /tmp/big-received.txt

Or to have the server receive the file:
</dev/null ./build/apps/tcp native -l 0 9090 > /tmp/big-received.txt

Or to have the client send the file:
./build/apps/tcp ipv4 169.254.144.1 9090 < /tmp/big.txt

To compare two files and make sure they’re the same:
sha256sum /tmp/big.txt or sha256sum /tmp/big-received.txt

If the SHA-256 hashes match, you can be almost certain the file was transmitted correctly.

Try this with a tiny file (12 bytes), then 65534 bytes (a little less than 216), then 65537 bytes
(a little omre than 216), then 200000 bytes, then the full megabyte (1000000 bytes). If they
all match, give yourself an even bigger pat on the back! If not. . . time to debug (possibly
with tcpdump and wireshark as described above).

4.2 Reach out and talk to a friend

If everything works above, try communicating with a labmate over the Internet! One of
you will run tcp native as a server, as above. The other will run tcp ipv4 as the client,
connecting to the labmate’s address on the CS144 private network (10.144.. . .).

CS144: Introduction to Computer Networking Winter 2025

Can you type to each other and successfully end the two streams cleanly? And if so, can you
pass the one-megabyte challenge (sending a random 1000000-byte file successfully over the
Internet to your labmate’s VM, with the SHA-256 hashes matching perfectly on both sides)?
If so, congratulations. . . now trade places and try sending the file in the other direction!

What’s the biggest file that you have the patience to successfully send to your labmate?
In your lab report, include the sizes of the two files (the output of ls -l /tmp/big.txt

for the sender and ls -l /tmp/big-received.txt for the receiver) and the results of

sha256sum /tmp/big.txt (on the sender’s VM) and sha256sum /tmp/big-received.txt

(on the receiver’s).

4.3 webget revisited

Remember your webget.cc that you wrote in Checkpoint 0? It used a TCP implementation
(TCPSocket) provided by the Linux kernel. We’d like you to switch it to use your own TCP
implementation without changing anything else. We think that all you’ll need to do is:

• Replace #include "socket.hh" with #include "tcp minnow socket.hh" .

• Replace the TCPSocket type with CS144TCPSocket .

• At the end of your get URL() function, add a call to socket.wait until closed() .

⋆Why am I doing this? Normally the Linux kernel takes care of waiting for
TCP connections to reach “clean shutdown” (and give up their port reservations)
even after user processes have exited. But because your TCP implementation is
all in user space, there’s nothing else to keep track of the connection state except
your program. Adding this call makes the socket wait until the connection is
fully closed.

Recompile, and run make check webget to confirm that you’ve gone full-circle: you’ve
written a basic Web fetcher on top of your own complete TCP “stack”, and it still suc-
cessfully talks to a real webserver. If you have trouble, try running the program manually:
./build/apps/webget cs144.keithw.org /hasher/xyzzy . You’ll get some debugging output
on the terminal that may be helpful.

5 Submit

1. In your submission, please only make changes to the .hh and .cc files in the src

directory (and apps/webget.cc). Within these files, please feel free to add private
members as necessary, but please don’t change the public interface of any of the classes.

CS144: Introduction to Computer Networking Winter 2025

2. Before handing in any assignment, please run these in order:

(a) Make sure you have committed all of your changes to the Git repository. You
can run git status to make sure there are no outstanding changes. Remember:
make small commits as you code.

(b) cmake --build build --target format (to normalize the coding style)

(c) cmake --build build --target check3 (to make sure the automated tests

pass)

(d) Optional: cmake --build build --target tidy (suggests improvements to

follow good C++ programming practices)

3. Write a report in writeups/check3.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

(a) Program Structure and Design. Describe the high-level structure and design
choices embodied in your code. You do not need to discuss in detail what you
inherited from the starter code. Use this as an opportunity to highlight important
design aspects and provide greater detail on those areas for your grading TA to
understand. You are strongly encouraged to make this writeup as readable as
possible by using subheadings and outlines. Please do not simply translate your
program into an paragraph of English.

(b) Alternative design choices that you considered or ideally evaluated in terms of
their performance, difficulty to write (e.g., hours required to produce a bug-free
implementation), difficulty to read (e.g., lines of code and their degree of subtlety
or nonobvious correctness), and any other dimensions you think are interesting for
the reader (or for your own past self before you did this assignment). Include any
measurements if applicable.

(c) Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?

(d) Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

(e) Hands-on Activity. Include answers to the questions and some thoughtful
commentary on the hands-on activity above.

4. Please also fill in the number of hours the assignment took you and any other comments.

5. Please let the course staff know ASAP of any problems at a lab session, or by posting a
question on Ed. Good luck!

CS144: Introduction to Computer Networking Winter 2025

6 Extra Credit

Extra credit will be rewarded for improvements to the test suite. Add a test case to one of the
files in the tests directory (e.g. minnow/tests/recv connect.cc) that catches a real bug
that somebody might reasonably make that isn’t already caught by the existing test suite.
Please post your test on EdStem (it’s okay to make this public) so we can take a look and
decide whether to add it to the overall testsuite. (This opportunity will remain open—e.g. if
you find a good additional test for the Reassembler in week 10, that’s great too.)

	Overview
	Getting started
	Checkpoint 3: The TCP Sender
	How does the TCPSender know if a segment was lost?
	Implementing the TCP sender
	FAQs and special cases

	Development and debugging advice
	Hands-on activity
	Experiments within your own VM
	Have Linux's TCP talk to itself
	Have your TCP talk to Linux's
	Try to pass the ``one megabyte challenge''

	Reach out and talk to a friend
	webget revisited

	Submit
	Extra Credit

