CS144 An Introduction to Computer Networks

The Link Layer aka Physical Layer

Nick McKeown Professor of Electrical Engineering and Computer Science, Stanford University

Goals for today

1. Capacity:

What determines the maximum data rate of a link?

- ► How can we get close to the maximum capacity?
- **2. Clocks**: Two communicating entities cannot have exactly the same clock or frequency. How can they communicate?

The 4 Layer Internet Model

Total time to send a packet across a link: The time from when the first bit is transmitted until the last bit arrives.

Example: A 100bit packet takes $10 + 5 = 15\mu$ s to be sent at 10Mb/s over a 1km link.

Keith: So what was this about?

What determines the data rate?

Q: What determines the steepness (i.e. rate) of this change?Q: How does the rate of change affect the data rate?

Light travels through the fiber because of total internal reflection

Characteristics of fiber-optical links

High bandwidth:

- Lasers can be switched on/off very fast. ("very steep rate of change")
- The signal remains the same for a long distance ("low dispersion or spreading")
- Multiple signals of different colors can be sent over a cable simultaneously ("wavelength division multiplexing" or WDM).

Low signal loss: Typically 0.3dB/km (*)

Electromagnetic interference immunity: An opaque jacket means light cannot enter the cable. Total internal reflection means it is very hard to detect the signal outside the cable.

(*) Power loss (dB) = $10 log_{10} \frac{P_1}{P_2}$

For example: If power is reduced from 1W to 1mW, we would write: Power loss (dB) = $10log_{10}\frac{P_1}{P_0}$ = -30dB, or simply a "30dB loss". 0.3dB/km means about 7% is lost per km.

Fiber-optic communication links

Optical fibers and modules on the front panel of communication equipment

Typically used for very long and/or very fast communications

- Long haul links in the public Internet, e.g. 200km @ 400 Gb/s
- To connect buildings on campus, e.g. 2km @ 100Gb/s
- Between racks of equipment in a data center, e.g. 50m @ 100Gb/s
- World-record NEC (2011) 101.7 Tb/s over 370 WDM channels at 165km! CS144, Stanford University

What determines the <u>maximum</u> data rate of a cable, fiber, wireless link, etc?

Q: What happens if we put the "bits" closer and closer together?

Q: If we can't put them closer together, how can we increase the number bits of information transmitted per second?

Q: What other factors limit the number of bits per second we can transmit?

Q: Are there any other factors other than "Bandwidth" and "Noise" that determine the maximum data rate of a channel?

Claude Shannon

1937: MS Thesis proposed using Boolean algebra for digital circuit design.

1948: "A Mathematical Theory of Communication" led to the field of Information Theory and Shannon Capacity

Claude Shannon (1916 – 2001) Mathematician, Electrical Engineer

Shannon's Juggling Machines https://www.youtube.com/watch?v=dyc5bgpY86c

Shannon Capacity

- Shannon capacity is the maximum error-free rate we can transmit through a channel (e.g. wire, fiber, air, ...).
- The maximum "data rate".
- Under some mild assumptions:

Shannon Capacity = B
$$log_2\left(1+\frac{S}{N}\right)$$

- In other words, it depends only on Bandwidth and Signal-to-Noise ratio!
- EE376A: Information Theory. Wow.

Shannon Capacity

But: It doesn't tell us how to achieve the capacity.

Hence: Huge numbers of researchers and engineers have spent decade trying to approach it, in different contexts:

- WiFi
- Cellular telephones
- Ethernet
- Optical Fibers
- ADSL Broadband access
- Modems ())
- ...

Analog signals

Frequency = 1/wavelength Bandwidth: size of frequency range Phase: location of peak within the wavelength

On-Off Keying (OOK)

- One frequency
- 2 amplitudes

Sending Os and 1s

Frequency Shift Keying (FSK)

Amplitude Shift Keying (ASK)

Phase Shift Keying (PSK)

- For the same frequency + amplitude, vary the phase
- No variation in power (amplitude) or wavelength (frequency)

Phase in Analog signals

Phase in Analog signals

I/Q constellations

For the same frequency:

- What I/Q constellation (amplitude, phase) should I select?
- How should I assign a symbol (amplitude, phase) = to bits?

Quadrature Phase Shift Keying (QPSK)

1. For each symbol:

- What is the amplitude?
- What is the phase?
- 2. Represent each symbol as a bit (or bits).

Quadrature Amplitude Modulation (16-QAM)

- 1. How many symbols?
- 2. How many amplitude variations?
- 3. How many phase variations?
- 4. How many bits per symbol?

Example 32 bit word transmission using 16-QAM

Examples today

ASK/OOK: Wired Ethernet FSK: Bluetooth BPSK: 802.11 abgn QPSK: 802.11 abgn, LTE 16-QAM: 802.11abgn, LTE 64-QAM: 802.11 abgn, LTE, 5G 256-QAM: 5G 1024-QAM: Home powerline communication 32768-QAM: ADSL (digital data over long telephone cables)

Clocks

If we don't know the sender's (TX) clock

Synchronous communication on network links

Encoding for clock recovery

If the clock is not sent separately, the data stream must have enough transitions for the receiver to determine when to sample the arriving data.

Encoding for clock recovery

Example #1: 10Mb/s Ethernet

Advantages of Manchester encoding:

- Guarantees one transition per bit period.
- Ensures d.c. balance (i.e. equal numbers of hi and lo). Disadvantages
 - Doubles bandwidth needed in the worst case.

CS144, Stanford L

CS144, St

Example #2: 4b/5b encoding

4-bit data	5-bit code
0000	11110
0001	01001
0010	10100
	•••

Advantages of 4b/5b encoding:

- More bandwidth efficient (only 25% overhead).

- Allows extra codes to be used for control information. Disadvantages

- Fewer transitions makes clock recovery a little harder.

Sizing an elasticity buffer

Sizing an elasticity buffer

- 1. Hold buffer nominally at B/2.
 - At start of new packet, allow buffer to fill to B/2.
 - Or, make sure buffer drains to B/2 before new packet.
- 2. Size buffer so that it does not overflow or underflow before packet completes.
- 3. $(R_{tx} > R_{rx})$: Given inter packet gap, size B/2 for no overflow.
- 4. $(R_{rx} > R_{tx})$: Given max length packet, pick B/2 for no underflow.

Preventing overflow

Preventing underflow

Sizing an elasticity buffer Example

Maximum packet size 4500bytes Clock tolerance +/- 100ppm

 $B^{3}2(4500 \times 8 \times 200 \times 10^{-6}) = 14bits$

Therefore,

- 1. Elasticity buffer needs to be at least 14 bits
- 2. Wait for at least 7 bits before draining buffer
- 3. Inter-packet gap at least 7 bits