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Nick’s Review topics

1. Packet Switching

2. Routing, spanning trees and Dijkstra
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CS144: An Introduction to Computer Networks

Packet Switching
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Outline

1. End-to-end delay

2. Queueing delay

3. Simple deterministic queue model

4. Rate guarantees

5. Delay guarantees
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Propagation Delay, tl: The time it takes a single bit to 
travel over a link at propagation speed c. 

l

tl =
l

c

Example: A bit takes 5ms to travel 1,000km in an optical fiber 
with propagation speed 2 x 108 m/s.
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Packetization Delay, tp: The time from when the first 
to the last bit of a packet is transmitted.

p

tp =
p

r

Example 1: A 64byte packet takes 5.12ms to be transmitted onto a 100Mb/s link.
Example 2: A 1kbit packet takes 1.024s to be transmitted onto a 1kb/s link. 

r bits/s
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Total time to send a packet across a link: The time from 
when the first bit is transmitted until the last bit arrives. 

p

Example: A 100bit packet takes 10 + 5 = 15ms to be sent at 10Mb/s over a 1km link.

r bits/s

𝑡 = 𝑡𝑝 + 𝑡𝑙 =
𝑝

𝑟
+
𝑙

𝑐

l
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Simple model of a router queue

7
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D(t)

A(t)

Time

Q(t)

d(t)

A(t): Cumulative Arrivals. Non-decreasing.
D(t): Cumulative Departures. Non-decreasing.

Queue occupancy: Q(t) = A(t) - D(t).

Queueing delay, d(t), is the time spent in the queue by a 
byte that arrived at time t, assuming the queue is served 
first-come-first-served (FCFS). 

Simple model of a queue
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Example (store & forward)
Every second, a 500 bit packet 

arrives to a queue at rate 
10,000b/s. The maximum 

departure rate is 1,000b/s. What 
is the average occupancy of the 

queue?

Solution: During each repeating 1s cycle, the queue fills at rate 
10,000b/s for 0.05s, then empties at rate 1,000b/s for 0.5s. Over 
the first 0.55s, the average queue occupancy is therefore 250 bits. 
The queue is empty for 0.45s every cycle, and so average queue 
occupancy is (0.55 * 250) + (0.45 * 0) = 137.5 bits. 
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Example (“cut through”)

Every second, a 500 bit packet arrives to 
a queue at rate 10,000b/s. The 

maximum departure rate is 1,000b/s. 
What is the time average occupancy of 

the queue?
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D(t)

A(t)

time0.05s 0.5s 1.0s

500

Solution: During each repeating 1s cycle, the queue fills at 
rate 10,000b/s to 500-50=450 bits over the first 0.05s, then 
drains at rate 1,000b/s for 0.45s. Over the first 0.5s, the 
average queue occupancy is therefore 225 bits.
The queue is empty for 0.5s every cycle, and so average 
queue occupancy: ത𝑄 𝑡 = 0.5 × 225 + 0.5 × 0 =
112.5

Q(t)
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How do I give flows a weighted 
fair share of a link?

(instead of strict priority)

11
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Weighted Fair Queueing

12

1

As before, packets are sent in the order they would 
complete in the bit-by-bit scheme.

23

23456
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Weighted Fair Queueing (WFQ)

1. It can be proved that the departure time of a packet with WFQ is 
no more than Lmax/R seconds later than if it was scheduled bit-by-
bit. Where Lmax is the maximum length packet and R is the data 
rate of the outgoing link.

2. In the limit, flows receive their weighted fair share of the link.

13



CS144, Stanford University

Weighted Fair Queueing (WFQ)

14

𝜙1

𝜙i

𝜙N

∑𝜙i = 1
i

R

Flow i is guaranteed to receive at least rate  𝜙iR

Classify packets 
into flows

Packets arriving 
at different 

ingress ports

Packet 
scheduler
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Delay guarantees: Intuition

15

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =෍
𝑖

𝑝

𝑟𝑖
+
𝑙𝑖
𝑐
+ 𝑄𝑖(𝑡)End-to-end delay, 

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

The following values are fixed (or under our control): p, c, li and ri. 
If we know the upper bound of 𝑄1 𝑡 , 𝑄2 𝑡 , and 𝑄3 𝑡 , then we 

know the upper bound of the end-to-end delay.
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Delay guarantees: Intuition

16

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =෍

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+ ෍

𝑖=1

3

𝑄𝑖 𝑡End-to-end delay for a single packet, 

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

𝑏1 𝑏2 𝑏3
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Bounding end-to-end delay

17

𝜙R
b

𝜙R
b

𝜙R
b

1. Allocate a queue of size b for this flow
2. Assign a WFQ service rate of𝜙R

The end-to-end delay of a single packet of length p ≤ 4
𝑙

𝑐
+

𝑝

𝑅
+ 3

𝑏

𝜙R

l l

l l
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The leaky bucket regulator

Number of bits that can be sent in any period 
of length t is bounded by: 𝜎 + 𝜌𝑡

It is also called a “(𝜎, 𝜌) regulator”

𝐷(𝑡)
Output from regulator

r

s

time

Cumulative

bits

𝐴(𝑡)
Input to regulator

r

s

Packets In

𝐴(𝑡)
Packets Out

𝐷(𝑡)
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The leaky bucket regulator
Limiting the “burstiness”

r

s

𝜙R
b

If 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎 then delay through the first router for all packets in the flow ≤
𝑏

𝜙R

𝜙R
b

Cool theorem: If arrivals to the queue are 𝜎, 𝜌 -constrained, 
and if the queue is served at rate 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎, 
then departures are also 𝜎, 𝜌 -constrained. Which means
arrivals to the next router are also 𝜎, 𝜌 -constrained.
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Putting it all together

r

s

𝜙R
b

If 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎 then the end-to-end delay of every packet of length p ≤ 4
𝑙

𝑐
+

𝑝

𝑅
+ 3

𝑏

𝜙R
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An Example
Q: In the network below, we want to give an application flow a rate of 10Mb/s and an end 
to end delay of less than 4.7ms for 1,000 byte packets. What values of 𝜎 and 𝜌 should we 
use for the leaky bucket regulator? And what service rate and buffer size do we need in 
the routers? (Assume speed of propagation, 𝑐 = 2 × 108m/s).

A B10km, 1Gb/s 100km, 100Mb/s 10km, 1Gb/s

A: The fixed component of delay is Τ(120𝑘𝑚 𝑐) + 8,000𝑏𝑖𝑡𝑠(
1

109
+

1

100×106
+

1

109
) = 0.7ms, leaving 

4ms delay for the queues in the routers. Let’s apportion 2ms delay to each router, which means the 
queue in each router need be no larger than 2𝑚𝑠 × 10Mb/s = 20,000bits (or 2500bytes). 
Therefore, the leaky bucket regulator in Host A should have 𝜌 = 10𝑀𝑏/𝑠 and 𝜎 ≤ 20,000𝑏𝑖𝑡𝑠. 
WFQ should be set at each router so that 𝜙𝑖𝑅 ≥ 10𝑀𝑏/𝑠 and the flow’s queue should have a 
capacity of at least 2500bytes.

Leaky bucket (𝜎, 𝜌) regulator
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Nick’s Review topics

1. Packet Switching

2. Routing, spanning trees and Dijkstra



CS144, Stanford University

Spanning Tree

R7

R6R4R2
R1

R8

R5

R3

A

X

B C D

Spanning tree
- Spanning: It reaches all leaves

- Tree: It has no loops
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Dijkstra’s shortest path first algorithm
(example of a “Link State Algorithm”)

1. Exchange link state: A router floods to every other router the state 
of links connected to it.

- Periodically

- When link state changes

2. Run Dijkstra: Each router independently runs Dijkstra’s shortest 
path first algorithm. 

Each router finds min-cost spanning tree 
to every other router.
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Example Annotated Graph
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Example Annotated Graph
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Minimum cost spanning tree. 

In this case, simple. 
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An example: spanning tree rooted on R8 
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The algorithm

R7
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R3R5

R6R7

Add R7



CS144, Stanford University

The algorithm

R7
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