
CS144, Stanford University

Nick’s Review topics

1. Packet Switching

2. Routing, spanning trees and Dijkstra

CS144, Stanford University

CS144: An Introduction to Computer Networks

Packet Switching

CS144, Stanford University 3

Outline

1. End-to-end delay

2. Queueing delay

3. Simple deterministic queue model

4. Rate guarantees

5. Delay guarantees

CS144, Stanford University 4

Propagation Delay, tl: The time it takes a single bit to
travel over a link at propagation speed c.

l

tl =
l

c

Example: A bit takes 5ms to travel 1,000km in an optical fiber
with propagation speed 2 x 108 m/s.

CS144, Stanford University 5

Packetization Delay, tp: The time from when the first
to the last bit of a packet is transmitted.

p

tp =
p

r

Example 1: A 64byte packet takes 5.12ms to be transmitted onto a 100Mb/s link.
Example 2: A 1kbit packet takes 1.024s to be transmitted onto a 1kb/s link.

r bits/s

CS144, Stanford University 6

Total time to send a packet across a link: The time from
when the first bit is transmitted until the last bit arrives.

p

Example: A 100bit packet takes 10 + 5 = 15ms to be sent at 10Mb/s over a 1km link.

r bits/s

𝑡 = 𝑡𝑝 + 𝑡𝑙 =
𝑝

𝑟
+
𝑙

𝑐

l

CS144, Stanford University

Simple model of a router queue

7

CS144, Stanford University 8

D(t)

A(t)

Time

Q(t)

d(t)

A(t): Cumulative Arrivals. Non-decreasing.
D(t): Cumulative Departures. Non-decreasing.

Queue occupancy: Q(t) = A(t) - D(t).

Queueing delay, d(t), is the time spent in the queue by a
byte that arrived at time t, assuming the queue is served
first-come-first-served (FCFS).

Simple model of a queue

C
u
m

u
la

ti
v
e

n
u
m

b
er

 o
f

b
y
te

s

CS144, Stanford University 9

Example (store & forward)
Every second, a 500 bit packet

arrives to a queue at rate
10,000b/s. The maximum

departure rate is 1,000b/s. What
is the average occupancy of the

queue?

Solution: During each repeating 1s cycle, the queue fills at rate
10,000b/s for 0.05s, then empties at rate 1,000b/s for 0.5s. Over
the first 0.55s, the average queue occupancy is therefore 250 bits.
The queue is empty for 0.45s every cycle, and so average queue
occupancy is (0.55 * 250) + (0.45 * 0) = 137.5 bits.

C
u

m
u

la
ti

ve
n

u
m

b
e

r
o

f
b

it
s

D(t)

A(t)

time0.05s 0.55s 1.0s

500

1.05s

Q(t)

CS144, Stanford University 10

Example (“cut through”)

Every second, a 500 bit packet arrives to
a queue at rate 10,000b/s. The

maximum departure rate is 1,000b/s.
What is the time average occupancy of

the queue?

C
u

m
u

la
ti

ve
n

u
m

b
er

 o
f

b
it

s

D(t)

A(t)

time0.05s 0.5s 1.0s

500

Solution: During each repeating 1s cycle, the queue fills at
rate 10,000b/s to 500-50=450 bits over the first 0.05s, then
drains at rate 1,000b/s for 0.45s. Over the first 0.5s, the
average queue occupancy is therefore 225 bits.
The queue is empty for 0.5s every cycle, and so average
queue occupancy: ത𝑄 𝑡 = 0.5 × 225 + 0.5 × 0 =
112.5

Q(t)

CS144, Stanford University

How do I give flows a weighted
fair share of a link?

(instead of strict priority)

11

CS144, Stanford University

Weighted Fair Queueing

12

1

As before, packets are sent in the order they would
complete in the bit-by-bit scheme.

23

23456

1

1 2 2 1

3/4

1/4

12 123

3

CS144, Stanford University

Weighted Fair Queueing (WFQ)

1. It can be proved that the departure time of a packet with WFQ is
no more than Lmax/R seconds later than if it was scheduled bit-by-
bit. Where Lmax is the maximum length packet and R is the data
rate of the outgoing link.

2. In the limit, flows receive their weighted fair share of the link.

13

CS144, Stanford University

Weighted Fair Queueing (WFQ)

14

𝜙1

𝜙i

𝜙N

∑𝜙i = 1
i

R

Flow i is guaranteed to receive at least rate 𝜙iR

Classify packets
into flows

Packets arriving
at different

ingress ports

Packet
scheduler

CS144, Stanford University

Delay guarantees: Intuition

15

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =෍
𝑖

𝑝

𝑟𝑖
+
𝑙𝑖
𝑐
+ 𝑄𝑖(𝑡)End-to-end delay,

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

The following values are fixed (or under our control): p, c, li and ri.
If we know the upper bound of 𝑄1 𝑡 , 𝑄2 𝑡 , and 𝑄3 𝑡 , then we

know the upper bound of the end-to-end delay.

CS144, Stanford University

Delay guarantees: Intuition

16

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =෍

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+ ෍

𝑖=1

3

𝑄𝑖 𝑡End-to-end delay for a single packet,

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

𝑏1 𝑏2 𝑏3

≤෍

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+ ෍

𝑖=1

3
𝑏𝑖
𝑟𝑖

CS144, Stanford University

Bounding end-to-end delay

17

𝜙R
b

𝜙R
b

𝜙R
b

1. Allocate a queue of size b for this flow
2. Assign a WFQ service rate of𝜙R

The end-to-end delay of a single packet of length p ≤ 4
𝑙

𝑐
+

𝑝

𝑅
+ 3

𝑏

𝜙R

l l

l l

CS144, Stanford University

The leaky bucket regulator

Number of bits that can be sent in any period
of length t is bounded by: 𝜎 + 𝜌𝑡

It is also called a “(𝜎, 𝜌) regulator”

𝐷(𝑡)
Output from regulator

r

s

time

Cumulative

bits

𝐴(𝑡)
Input to regulator

r

s

Packets In

𝐴(𝑡)
Packets Out

𝐷(𝑡)

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

r

s

𝜙R
b

If 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎 then delay through the first router for all packets in the flow ≤
𝑏

𝜙R

𝜙R
b

Cool theorem: If arrivals to the queue are 𝜎, 𝜌 -constrained,
and if the queue is served at rate 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎,
then departures are also 𝜎, 𝜌 -constrained. Which means
arrivals to the next router are also 𝜎, 𝜌 -constrained.

CS144, Stanford University

Putting it all together

r

s

𝜙R
b

If 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎 then the end-to-end delay of every packet of length p ≤ 4
𝑙

𝑐
+

𝑝

𝑅
+ 3

𝑏

𝜙R

l l

l

𝜙R
b

𝜙R
b

l

CS144, Stanford University

An Example
Q: In the network below, we want to give an application flow a rate of 10Mb/s and an end
to end delay of less than 4.7ms for 1,000 byte packets. What values of 𝜎 and 𝜌 should we
use for the leaky bucket regulator? And what service rate and buffer size do we need in
the routers? (Assume speed of propagation, 𝑐 = 2 × 108m/s).

A B10km, 1Gb/s 100km, 100Mb/s 10km, 1Gb/s

A: The fixed component of delay is Τ(120𝑘𝑚 𝑐) + 8,000𝑏𝑖𝑡𝑠(
1

109
+

1

100×106
+

1

109
) = 0.7ms, leaving

4ms delay for the queues in the routers. Let’s apportion 2ms delay to each router, which means the
queue in each router need be no larger than 2𝑚𝑠 × 10Mb/s = 20,000bits (or 2500bytes).
Therefore, the leaky bucket regulator in Host A should have 𝜌 = 10𝑀𝑏/𝑠 and 𝜎 ≤ 20,000𝑏𝑖𝑡𝑠.
WFQ should be set at each router so that 𝜙𝑖𝑅 ≥ 10𝑀𝑏/𝑠 and the flow’s queue should have a
capacity of at least 2500bytes.

Leaky bucket (𝜎, 𝜌) regulator

CS144, Stanford University

Nick’s Review topics

1. Packet Switching

2. Routing, spanning trees and Dijkstra

CS144, Stanford University

Spanning Tree

R7

R6R4R2
R1

R8

R5

R3

A

X

B C D

Spanning tree
- Spanning: It reaches all leaves

- Tree: It has no loops

CS144, Stanford University

Dijkstra’s shortest path first algorithm
(example of a “Link State Algorithm”)

1. Exchange link state: A router floods to every other router the state
of links connected to it.

- Periodically

- When link state changes

2. Run Dijkstra: Each router independently runs Dijkstra’s shortest
path first algorithm.

Each router finds min-cost spanning tree
to every other router.

CS144, Stanford University

Example Annotated Graph

R7

R6R4R2
R1

R8

R5

R3

A

X

B C D

1 1 4

2

4

2 2 3

2
3

5 3

CS144, Stanford University

Example Annotated Graph

R7

R6R4R2
R1

R8

R5

R3

A

X

B C D

1 1 4

2

4

2 2 3

2
3

5 2

Minimum cost spanning tree.

In this case, simple.

CS144, Stanford University

An example: spanning tree rooted on R8

R7

R6R4R2
R1

R8

R5

R3

1 4 4

2

4

4 1 1

6
15 2

CS144, Stanford University

The algorithm

R7

R6R4R2
R1

R8

R5

R3

1 4 4

2

4

4 1 1

6
15 2

0 1 2 3 4 5 6 7

Shortest
Path Set

R8

Candidate
Set

R3R5

R6R7

Add R7

CS144, Stanford University

The algorithm

R7

R6R4R2
R1

R8

R5

R3

1 4 4

2

4

4 1 1

6
15 2

0 1 2 3 4 5 6 7

Shortest
Path Set

R8 R8R7 R8R7

R6

R8R7

R6R4

R8R7R6

R4R3

R8R7R6

R4R3R2

R8R7R6

R4R3R2R1

R8R7R6R4R3R2R

1R5

Candidate
Set

R3R5

R6R7

R3R5

R6R4

R3R5

R4

R3R5

R2

R5R2

R1

R5R1 R5 Empty

Add R7 R6 R4 R3 R2 R1 R5 Done

