Network Virtualization

Omar Baldonado Facebook, Network Infrastructure November 22, 2019

What is "virtualization"?

- Creating a virtual version of a common resource
 - Virtual memory process has its own address space
 - RAID storage process thinks its writing to one disk, but many underneath
 - Virtual machine the OS doesn't know it is running on top of another OS (and not hardware)

- A way to share a common resource

Progress toward "network virtualization"

- Many different steps/techniques over the years

- Generally, doing something a little different from the typical layer-defined behavior

Ex 1: Network Address Translation (NAT)

Ex 1: an Internet debate from the late 80s/early 90s

At Stanford! Steve Deering (PhD 1991, inventor of IPv6)

- "We're going to run out of IPv4 address space we need IPv6"
- "But it might take a while to roll out IPv6..."

And thus, network address translation (NAT) was born - from RFC 1918:

3. Private Address Space

The Internet Assigned Numbers Authority (IANA) has reserved the following three blocks of the IP address space for private internets:

10.0.0.0	—	10.255.255.255	(10/8 prefix)
172.16.0.0	_	172.31.255.255	(172.16/12 prefix)
192.168.0.0	-	192.168.255.255	(192.168/16 prefix)

ifconfig on my laptop at home

ocb-mbp:~ ocb\$ ifconfig

... .

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
 options=1203<RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP>
 inet 127.0.0.1 netmask 0xff000000
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
 nd6 options=201<PERFORMNUD,DAD>

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 8c:85:90:95:15:4a
inet6 fe80::14b2:9162:5553:8b72%en0 prefixlen 64 secured scopeid 0x8
inet 10.0.0.7 netmask 0xffffff00 broadcast 10.0.0.255
inet6 2601:647:5a00:6510:c0f:3811:351b:5c4d prefixlen 64 autoconf secured
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active

Private in home, public in Internet

Translation table between private and public

	Original Source IP	Original Source Port	New Source IP	New Source Port	Protocol	Destination IP	Destination Port
Address & port	10.0.0.5	53323	73.92.1.7	45584	ТСР	157.240.22.35	80
translation table	10.0.0.5	43023	73.92.1.7	9489	ТСР	157.240.22.174	80
	10.0.0.7	35803	73.92.1.7	49348	ТСР	69.171.250.54	80

Changing the packet

Ex 2: Virtual Private Network (VPN)

Ex 2: Virtual Private Networks (VPNs) in mid 90s

Use case:

- Companies have "branches" (banks, sales offices) that want to connect to headquarters over Internet

"Tunnels"

Ex 2: Virtual Private Networks (VPNs) in mid 90s

Use case:

- Companies have "branches" (banks, sales offices) that want to connect to headquarters over Internet
- Connect from public network (like a hotel)

How a "tunnel" works - encapsulation

IPsec VPN software at source

- Creates new packet with "tunnel" IPs
- Encapsulates encrypted original IP packet as payload in new packet
- Sends it out to destination IP tunnel endpoint

How a "tunnel" works - de-encapsulation

- Sends it along into HQ

Changing the packet

Ex 3: Virtual LANs (VLANs)

Ex 3: from late 90s/early 00s

- "Ethernets have a lot of traffic now wasn't so bad with just email..."
 - Recall CSMA/CD class
- Too much broadcast in a big IP subnet
 - But without one big IP subnet, how to span multiple devices?
- Introduced a "tag" in header to create a virtual LAN (layer 2)

Pros and cons

- Pros: super-easy to configure (don't worry about subnets, routing, ...)
 - Lots of people want L2 data centers
- Cons: 12 bits ~ 4K networks

Networking device - ins and outs

Lessons (from mid 2000s)

- Disparate tools in a toolbox
- Hard to implement compatible standards and technologies
- Hard to build "networks" with thousands of endpoints, and hundreds of thousands of tunnels

You are in a maze of little twisty passages, all different.

Setting the stage - some trends

- Data centers @scale
- Efficient use of resources, even inside a company
- Rise of hosting/cloud providers mid-late 2000s
- Server virtualization (VMware, ...) orders of magnitude more VMs, containers to address
- SDN centralized control/mgmt software

State-of-the-art network virtualization

Allow complete virtual networks ("overlays") on top of a shared physical network ("underlay")

Seen in clouds (AMZN, MSFT, GOOG, BABA, ORCL, ...) and enterprise-solutions from VMware, Citrix, ...

Network virtualization - basic requirements

 Multi-tenancy - customer's VMs can connect only to their VMs *and no one else's* (isolation)

- Both virtual addressing and virtual topologies, independent of physical location/topology

 Operate @scale - easy to turn up, extend, operate, turn down networks of VMs

Building block: virtual switch on a host

Server

3 VMs per server

D

192,168,1,3

- VLANs won't scale
- Switches have limited memory/table size

Remember this picture?

Red VMs connected to a "logical" switch

Ex 2: logically, green switches and green router

Ex 2: logically, green switches and green router

More features left to provide...

Every cloud has similar design choices

Ex: VMware/Nicira NSX

Source: VMware NSX Network Virtualization Fundamentals,

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-network-virtualization-fundamentals-guide.pdf

Ex: Amazon Virtual Private Cloud (VPC)

Layer 3 (L3): VPC		
	Mapping Service	
Server 192.168.0.3		Server 192.168.1.3
10.0.0.2		10.0.0.3
10.0.0.2	Src: 192.168.0.3 Dst: 192.168.1.4	10.0.0.4
Server 192.168.0.4	VPC: Blue	Server 192.168.1.4
10.0.0.4	12 Src: MAC(10.0.0.2)	10.0.1.3
10.0.0.5	L2 Dst: MAC(10.0.0.1)	
	L3 Src: 10.0.0.2 L3 Dst: 10.0.1.3	
	ICMP/TCP/UDP/	

Source: Networking @Scale 2017 video from Amazon,

https://engineering.fb.com/networking-traffic/networking-scale-2017-recap/

Ex: Facebook & Identifier Locator Addressing (ILA) - containers + translation (instead of VMs & tunnels)

Source: Networking @Scale 2017 video from Facebook,

https://engineering.fb.com/networking-traffic/networking-scale-2017-recap/

Networking at Facebook

NETWORK INFRA

Minipack 128x 100GE Switch System Specification

Figure 8-2: Switch Main Board Architecture

facebook research

Internet Performance from Facebook's Edge*

Brandon Schlinker^{†#} Italo Cunha[‡] Yi-Ching Chiu[†] Srikanth Sundaresan[#] Ethan Katz-Bassett[‡] [†] University of Southern California [#] Facebook [‡] Universidade Federal de Minas Gerais [‡] Columbia University

POSTED ON NOV 17, 2019 TO NETWORKING & TRAFFIC, VIDEO ENGINEERING

Evaluating COPA congestion control for improved video performance

Application-observed RTT measurement

facebook.com/ipv6

facebook.com/ipv6

Ranking *	Country / Region	IPv6 Adoption	Weekly Growth
2	India	61.18%	↗0.07%
1	United States	56.26%	↗0.09%
18	Belgium	51.62%	0.3%×0.3
7	Germany	49.42%	↗0.89%
21	Greece	45.85%	≥ 0.12%
11	Taiwan	44.49%	0.03% ک
4	Vietnam	41.46%	↗0.32%
8	Malaysia	41.43%	↗0.69%
38	Finland	38.87%	₫0.19%
10	France	37.82%	0.19% <mark>۲</mark>

Ranking *	Country / Region	IPv6 Adoption
34	Philippines	2.12%
164	Antarctica	1.94%
95	Iran	1.91%
121	St-Martin	1.89%
109	Gibraltar	1.73%
64	Dominican Rep.	1.38%
70	Bulgaria	1.31%
67	Paraguay	1.31%
50	Colombia	1.18%
181	Dem. Rep. Korea	1.17%

12.

connectivity.fb.com/

In June 2018, Magyar Telekom, subsidiary of Deutsche Telekom, deployed their first Terragraph network in Mikebuda, Hungary.

Terragraph improved local network speeds from 5mbps to

More info

- engineering.fb.com/category/networking-traffic/
- research.fb.com/category/systems-and-networking/
- connectivity.fb.com/

Connect with us!

Krizia Torres, University Recruiter kriziatorres@fb.com

Visit our Careers Page! facebook.com/careers/university

Connect with us

@FacebookCareers on Facebook@FacebookLife on Instagram@Universities on Facebook

PhD student? Contact Nate Lee (natelee@fb)

