CS144: An Introduction to Computer Networks

Packet Switching

= W e

Outline

End-to-end delay

Queueing delay
Simple deterministic queue model

Examples

Propagation Delay, {;: The time it takes a single bit to

o
o
Le]
et
—
-

travel over a link at propagation speed C.

Example: A bit takes 5ms to travel 1,000km in an optical fiber

with propagation speed 2 x 102 m/s.

Serialization Delay , 7 : The time from when the first
to the last bit of a packet is transmitted.

P

r bits/s

L, =

P
4

Example 1: A 64byte packet takes 5.12pus to be transmitted onto a 100Mb/s link.

Example 2: A 1kbit packet takes 1.024s to be transmitted onto a 1kb/s link.

Total time to send a packet across a link: The time from
when the first bit is transmitted until the last bit arrives.

5N

I r bits/s

p
t=1t,+t; =—+—
p T

Example: A 100bit packet takes 10 + 5 = 15us to be sent at 10Mb/s over a 1km link.

End-to-end delay

Example: How long will it take a packet of length p to travel from A
to B, from when the 15t bit is sent, until the last bit arrives? Assume
the switches store-and-forward packets along the path.

End-to-end delay, = égﬁ l—

p/r,

time

>

O

|11 r]_ a |21 r2 a |31 r3 a |4’ r4 B
s1 S2 >3

o ®p

End-to-end delay, ==

e

0
+ s
o

Data

E :-“Other packets EN
AE 3, 1y PO AN 15, I3 a 1, 14 B
S1 4

:,:’ s2 Q,(1) $3

A 2 Ep 1 0
End-to-end delay, = égﬁ iy 0.(1)
51 ik i €6 C o
|I1/<T>I Q,(t)
pley—

100%

90%

80%

70%

() 60%

CDF (%)

() 50%

40%

30%

20%

10%

0%

Packet delay variation

el

[

|

Stanford-Princeton
4,000 km

/

Variation ~50ms /

Stanford-Tsinghua
10,000 km

Variation ~200ms

100

200 300

RTT (ms)

400

500 600

700

Simple model of a router queue

Simple model of a router queue

A(t): cumulative arrivals up until time t
D(t): cumulative departures up until time t
Q (t): number of packets in queue at time ¢t

Router queue

Arriving packets \ A(t)» A D(t)
from different inputs / > —@
Q(t)

Properties:
1. A(t), D(t) non-decreasing
2. A(t) = D(t)

Simple model of a queue

Cumulative number of bytes
arrived up until time t.

A(t)l

Q(t)

Link
rate
D(t)

Cumulative number of bytes
departed up until time 1.

Cumulative

number of bytes

time

Properties:
1. A(t),D(t) non-decreasing
2. A(t) = D(t)

Simple model of a queue

4 -
——_—

o*
.
R
.
o®
.
.
.
.

S
s
.
.
.

Cumulative
number of bytes
>

*
*

time

Queue occupancy: Q(t) = A(t) — D(t).

Queueing delay, d(t), is the time spent in the queue by a
byte that arrived at time t, assuming the queue is served

first-come-first-served (FCFS).

Example (store & forward)

A

Every second, a 500 bit packet
arrives to a queue at rate
10,000b/s. The maximum

departure rate is 1,000b/s. What

is the average occupancy of the | ¢, A(t)

‘s’
.. o
& «*
* .
ueue ’ .
. * .
* - **
* .
* . o*
* .
* .*
9.

Cumulative
number of bits

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
R
e

*
*
*
*
*
*
*
*
*
*
“
<

0.05s 0.55s 1.0s 1.05s time

Solution: During each repeating 1s cycle, the queue fills at rate
10,000b/s for 0.05s, then empties at rate 1,000b/s for 0.5s. Over
the first 0.55s, the average queue occupancy is therefore 250 bits.
The queue is empty for 0.45s every cycle, and so average queue
occupancy is (0.55 * 250) + (0.45 * 0) = 137.5 bits.

Example (“cut through”)

Every second, a 500 bit packet arrives to
a queue at rate 10,000b/s. The
maximum departure rate is 1,000b/s.
What is the time average occupancy of
the queue?

Cumulative
number of bits

500

R
QIR
ve®

**
.
.
.
.
.
.
.*
Y

“‘.
.

oUNNNNEEEEEEREEEENEEERY

“
*
*
*
*
*
*
*
*
.
"
Q *
R4 *
*
*
*
*
*
*
*
*
*
*
“
*

1.0s

112.5

Solution: During each repeating 1s cycle, the queue fills at

rate 10,000b/s to 500-50=450 bits over the first 0.05s, then
drains at rate 1,000b/s for 0.45s. Over the first 0.5s, the
average queue occupancy is therefore 225 bits.
The queue is empty for 0.5s every cycle, and so average
queue occupancy: Q(t) = (0.5 X 225) + (0.5 x 0) =

time

What if some packets are more
important than others?

By default, switches and routers use
FIFO (aka FCFS) queues

Buffer size, B

Packets arriving\ . Service Rate, R Departing
to different > packets

ingress ports / |]

By default, switches and routers use
FIFO (aka FCFS) queues

Buffer size, B

Packets arriving\ . Service Rate, R Departing
to different > packets

ingress ports / |]

Some packets are more important

For example:

1. The control traffic that keeps the network working (e.g. packets
carrying routing table updates)

2. Traffic from a particular user (e.g. a customer paying more)
3. Traffic belonging to a particular application (e.g. videoconference)
4. Traffic to/from particular IP addresses (e.g. emergency services)

5. Traffic that is time sensitive (e.g. clock updates)

Flows

When talking about priorities, it’s convenient to talk about a “flow” of
packets that all share a common set of attributes. For example:

1. The flow of packets all belonging to the same TCP connection
|dentified by the tuple: TCP port numbers, IP addresses, TCP protocol

2. The flow of packets all destined to Stanford
|dentified by a destination IP address belonging to prefix 171.64/16

3. The flow of packets all coming from Google
ldentified by a source IP address belonging to the set of prefixes Google owns.

4. The flow of web packets using the http protocol
ldentified by packets with TCP port number = 80

5. The flow of packets belonging to gold-service customers
Typically identified by marking the IP TOS (type of service) field

Outline

1. Strict Priorities

2. Weighted Priorities and Rate Guarantees

Strict Priorities

High priority flows

_

>(§ - 1 ?

Low priority flows

Strict Priorities

High priority flows

_

Low priority flows

“Strict priorities” means a queue is only served
when all the higher priority queues are empty

Strict Priorities: Things to bear in mind

1. Strict priorities can be used with any number of queues.

2. Strict priorities means a queue is only served when all the higher
priority gueues are empty.

3. Highest priority flows “see” a network with no lower priority
traffic.

4. Higher priority flows can permanently block lower priority flows.
Try to limit the amount of high priority traffic.

5. Not likely to work well if you can’t control the amount of high
priority traffic.

6. Or if you really want weighted (instead of strict) priority.

How do | give weighted
(instead of strict) priority?

Trying to treat flows equally

——

><§ - 11

Trying to treat flows equally

-

While each flow gets to send at the same packet rate,
the data rate is far from equal.

Scheduling flows bit-by-bit

—

= -

Scheduling flows bit-by-bit

=

=

Now each flow gets to send at the same data rate,
but we no longer have “packet switching”.

Can we combine the best of both?

l.e. packet switching, but with bit-by-bit accounting?

Fair Queuelng

3 2 1

—

) AT A0 A A
- -1t - -10 - >

Packets are sent in the order they would complete in the bit-by-bit scheme.

Does this give fair (i.e. equal) share of the data rate?

Yes!

1. It can be proved that the departure time of a packet with Fair
Queueing is no more than L__ /R seconds later than if it was
scheduled bit-by-bit. Where L. is the maximum length packet and
R is the data rate of the outgoing link.

2. In the limit, the two flows receive equal share of the data rate.

3. The result extends to any number of flows sharing a link.!

[1] “Analysis and Simulation of a Fair Queueing Algorithm” Demers, Keshav, Shenker. 1990.

What if we want to give a different
share of the link to each flow?

i.e., a weighted fair share.

Weighted Fair Queueing

N 3 2 1 3/4

504321
- N |||||||||-m-|||||||||-||||-|||||||||»
As before, packets are sent in the order they would
complete in the bit-by-bit scheme.

Weighted Fair Queueing (WFQ)

For any number of flows, P
and any mix of packet sizes:

1. Determine the departure
time for each packet using
the weighted bit-by-bit
scheme.

2. Forward the packets in
order of increasing
departure time.

Flow I is guaranteed to receive at least rate #R

Packets arrivin
at different
ingress ports

Weighted Fair Queueing (WFQ)

e

Classify packetsw

into flows J

?\\{
/

.

) 2
. | { packet | R R
schedulerj
2.9=1
M T

Flow I is guaranteec

to receive at least rate @R

Summary

1. FIFO queues are a free for all: No priorities, no guaranteed rates.

2. Strict priorities: High priority traffic “sees” a network with no
ow priority traffic. Useful if we have limited amounts of high

oriority traffic.

3. Weighted Fair Queueing (WFQ) lets us give each flow a
guaranteed service rate, by scheduling them in order of their bit-

by-bit finishing times.

Can we guarantee the delay
of a packet across a network
of packet switches?

Delay guarantees: Intuition

Q1(t) Q. (t) Qs3(t)

End-to-end delay, 1 = 2 (p + l—l + Qi(t))
: C

i \"i
7
Z@-— The following values are fixed (or under our control): p, ¢, |; and r.
:."'5

If we know the upper bound of Q,(t), Q,(t), and Q;(t), then we
know the upper bound of the end-to-end delay.

Upper bound on Q(t)

_ -

b
Q(t) S;

Example: If a packet arrives to a FIFO queue of size 1 million bits, and the queue is served

at 1Gb/s, then the packet is guaranteed to depart within 106/109 = 1ms.

Delay guarantees: Intuition

b b, b3,

—>

| | |
l,, r, ﬁ I, 1, ﬁ 5, rBa l,, 14

Q.(t) Q. (t) Qs3(t)

s

1=

4 3
l.
End-to-end delay for a single packet, T = 2 (g + ?) + z Q;(t)
1 Mt i=1
[\~ b
< (B 4 _l> I
—\1; C —i T;
1=1 1=1

Why this is only an intuition...

1. Doesn’t tell us what happens when r, < r;. Will packets be
dropped?

2. Treats all packets sharing a queue as one big flow; it doesn’t give a
different end-to-end delay to each flow.

Q: How can we give an upper bound on delay to each individual flow?

Packets arrivin
to different
ingress ports

Weighted Fair Queueing (WFQ)

e

Classify packetsw

into flows J

?\\[
/

.

) 2
. | { packet | R R
scheduler)
2.¢=1
M T

Flow I is guaranteec

to receive at least rate @R

Weighted Fair Queueing (WFQ)

P

=

- D
| Packet R N
scheduler)

=1
Miy

Packets arriving ,

to different ——— CIa;sn‘y packetsw —

. into flows J

Ingress ports __—~

L
delay < -
iR
Flow I is guaranteec

to receive at least rate @R

CS144, Stanford University

Bounding end-to-end delay

47

Bounding end-to-end delay

1. Allocate a queue of size b for this flow

2. Assign a WFQ service rate of gR

| 7R

The end-to-end delay of a single packet of length p < 4 (i + %) +3

@R

What if two of the flow’s enter the
network back-to-back? (A “burst”)

1. If the packets are far apart, then the queues drain the first packet
oefore the second one arrives. All is good, and the delay equation

nolds.

2. If the packets are close together in a “burst”, then they can arrive
faster than ¢gR and the queue might overflow, dropping packets.

3. This might be OK in some cases. But if we want to bound the end-to-
end delay of all packets, then we need to deal with bursts. How?

The leaky bucket regulator

Limiting the "burstiness”

Tokensat .. @
constant rate, p

Token bucket
size, ©

Packets In ‘Q Packets Out

Send packet if and only if we
have tokens in the bucket

The leaky bucket regulator

Limiting the "burstiness”

Tokens at
constant rate, p

.............. O

Token bucket
O size, O
Q A 4

- Packets In

>

‘@ Packets Out

Send packet if and only if we
have tokens in the bucket

The leaky bucket regulator
Limiting the "burstiness”

Tokens at
constant rate, p

Token bucket
@ size, O
:. A 4

Packets In
e

>

‘@ Packets Out

Send packet if and only if we
have tokens in the bucket

The leaky bucket regulator

p @

Q

v

Packets In X "Q Packets Out>
A(t)

Number of bits that can be sent in any period
of length t is bounded by: o + pt

It is also called a “(a, p) regulator”

Cumulative
bits

A

A(t)
Input to regulator

The leaky bucket regulator
Limiting the "burstiness”

D@ Cool theorem: If arrivals to the queue are (o, p)-constrained,
and if the queue is served at rate R > p and b > o,

: then departures are also (g, p)-constrained. Which means

) S arrivals to the next router are also (o, p)-constrained.

@) :

O :

b b
O T

If R > p and b > o then delay through the first router for all packets in the flow < ¢R

Putting it all together

Q

b

In other words

Leaky bucket
(o, p) regulator

5

b b b
A¢R “*2¢R 3¢3

Lt Gyt GG
/

Q.(t) Q. (t) Qs3(t)

If we set b; > o, and ¢;R > p then T—z() Z:Q(t)

=1 1=
1

S

%)

l:

An Example

Q: In the network below, we want to give an application flow a rate of 10Mb/s and an end
to end delay of less than 4.7ms for 1,000 byte packets. What values of o and p should we
use for the leaky bucket regulator? And what service rate and buffer size do we need in
the routers? (Assume speed of propagation, c = 2 X 108m/s).

Leaky bucket (g, p) regulator

i 10km, 1Gb/sa 100km, 1OOMb/sa 10km, 1Gb/s 5

A: The fixed component of delay is (120km/c) + 8,000bi1,“5(1;9 + 10())1(106 +1—(1)9

4ms delay for the queues in the routers. Let’s apportion 2ms delay to each router, which means the
queue in each router need be no larger than 2ms X 10Mb/s = 20,000bits (or 2500bytes).
Therefore, the leaky bucket regulator in Host A should have p = 10Mb/s and o < 20,000bits.
WEFQ should be set at each router so that ;R = 10Mb /s and the flow’s queue should have a
capacity of at least 2500bytes.

= 0.7ms, leaving

In practice

While almost all network equipment implements WFQ (even
your WiFi router at home might!), public networks don’t
provide a service to control end-to-end delay.

Why?
- |t requires coordination of all the routers from end to end.

- In most networks, a combination of over-provisioning and priorities
work well enough.

Summary

. If we know the size of a queue and the rate at which it is
served, then we can bound the delay through it.

. WFQ allows us to pick the rate at which a queue is served.

. With the two observations above, if no packets are dropped,
we can control end-to-end delay.

. To prevent drops, we can use a leaky bucket regulator to
control the “burstiness” of flows entering the network.

