Background

Wireshark is a tool for inspecting packets sent/received on a network interface. There are two modes: Open and Capture. Capture mode shows you a live stream of the packets currently going to/from the interface, which you can then save to a *pcap* file if you like. Open allows you to inspect a *pcap* file saved by a previous capture.

If you want to look at two *pcap* files simultaneously, the best way I've found is to start two instances of Wireshark -- e.g. on Mac, `open -n /Applications/Wireshark.app`

Exercise 1: Ping

Open `ping.pcap`, which contains a single captured ping from one host to another.

Don’t worry about the details of the ARP packets for now. We'll learn later that ARP is a discovery protocol for finding the Ethernet address to use when sending to a local IP address.

1. What is the IP address of the host being pinged? ____ . ____ . ____ . ____
2. What are the 3 layers in packet 1, starting with the outermost?
 Outermost: _______ Middle: _______ Innermost: _______
3. Does the innermost protocol identified in (2) use ports?
4. For packet 1, label the length (in bytes) of each portion on the diagram.
 Hint: The lengths should sum to 98 (the total length of the packet)
Exercise 2: SMTP

Open `smtp.pcapng`, which contains a captured SMTP conversation similar to the one in lab 0.

In your answers, use the Wireshark packet number (the “No.” column) to identify packets.

To make the TCP sequence/acknowledgement numbers easier to understand, set up Wireshark to display them relative to the first packet:

Wireshark→Preferences→Protocols→TCP→ check “Analyze TCP sequence numbers” and “Relative sequence numbers”.

1. What port does the SMTP server run on? ___
2. What port does the client run on? ___
3. What protocol does SMTP run on top of? ___
4. a. Which packet represents the telnet request? ___
 Hint: you won’t see the word “telnet” explicitly - but remember that the telnet request initiates a connection over the protocol you identified in (3).
 b. Which packet contains the 220 response from the SMTP server? ___
5. a. In which packet does the client first acknowledge the 220? ___
 b. What is the ACK number of the packet acknowledging the 220 (i.e. the packet identified in 5a?) ___
 c. You should see that the ACK number is one more than the length of the 220 response’s payload, meaning the client had received one byte in addition to the 220 by the time it acknowledged the 220. What data was in the byte the client received before the 220? ___
 d. Notice that the sequence number of the packet acknowledging the 220 is 1, meaning the client had already sent one byte by the time it acknowledged the 220. What data was in the byte the client sent before the 220? ___
6. Wireshark has flagged packets 15 and 17 as duplicates. Which packets do they duplicate?
 Packet 15: ___ Packet 17: ___
7. Notice that this pcap only contains packets involved in the email conversation, even though the computer that sent the email had lots of other network traffic going on at the same time. That’s because the capture was created using the capture filter “tcp port smtp”. In addition to capture filters, Wireshark also has display filters, which narrow down the packets displayed. For instance, we can filter out TCP packets with no payload, leaving only the packets containing the client’s requests and the server’s responses. Type this into the display filter box below the toolbar: “tcp.len > 0”. How many packets are displayed when this filter is applied? ___
Exercise 3: Traceroute

Open traceroute.pcap, which contains a captured traceroute to MIT. Below is the partial output of the traceroute command, showing the default three probes for each hop:

```
traceroute to mit.edu (104.83.252.128), 30 hops max, 60 byte packets
1 10.0.2.2 (10.0.2.2)  1.384 ms  1.288 ms  1.141 ms
2 192.168.0.1 (192.168.0.1)  16.188 ms  16.088 ms  16.021 ms
3 96.120.91.229 (96.120.91.229)  10.174 ms  10.112 ms  10.849 ms
4 be-20052-rur02.santaclara.ca.sfba.comcast.net (68.87.196.49)  12.210 ms  12.515 ms  12.448 ms
5 162.151.78.129 (162.151.78.129)  11.981 ms  12.304 ms  12.223 ms
6 be-232-rar01.santaclara.ca.sfba.comcast.net (162.151.78.253)  11.784 ms  9.530 ms  12.152 ms
7 be-3651-cr02.sunnyvale.ca.ibone.comcast.net (68.86.91.73)  12.071 ms  11.576 ms  11.788 ms
8 be-11083-pe02.529bryant.ca.ibone.comcast.net (68.86.84.14)  11.357 ms  11.604 ms  11.507 ms
9 75.149.231.242 (75.149.231.242)  12.913 ms  13.152 ms  12.740 ms
10 203.208.149.250 (203.208.149.250)  21.001 ms  20.906 ms
203.208.172.233 (203.208.172.233)  12.462 ms
11 203.208.149.254 (203.208.149.254)  23.141 ms *  22.830 ms
12 ***
13 203.208.192.162 (203.208.192.162)  166.854 ms
22mrpr02-hu0-6-0.npr.optusnet.com.au (210.49.108.54)  165.978 ms
203.208.190.138 (203.208.190.138)  182.836 ms
14 ***
15 22mrpr02-hu0-7-0.npr.optusnet.com.au (210.49.108.62)  166.082 ms
22mrpr01-hu0-6-0-1.npr.optusnet.com.au (210.49.112.114)  166.618 ms
22mrpr02-hu0-7-0.npr.optusnet.com.au (210.49.108.62)  172.404 ms
```

Note: you can ignore packets 1-4 in the pcap; they are part of another communication.

1. a. What is the IP of the host requesting the traceroute? ____.___. ____.___
 b. How does the sending host determine MIT’s IP address? **Hint:** See packets 5-8.

2. After determining MIT’s IP address, the source host begins sending packets to MIT.
 a. What is the innermost protocol of these packets? ___
 b. How many packets does it send before getting the first response? ___
 What is the TTL of the last packet sent before the first response? ___
 What do you notice about the source and destination ports of the packets sent to MIT?
 c. Which packet is the first response responding to? ___
 Hint: The ICMP payload of the response packet contains part of the packet which prompted the response. The ports may be helpful in differentiating packets.

3. Look at the traceroute output for hops 10, 13, and 15. What is different about the output for these hops?
a. Which packets did the source send to prompt the responses from hop 10? To confirm your answer, check that the source/destination ports match. ___
Hint: You can filter for a TTL of x with $\text{ip.ttl} == x$.
Also note that the traceroute was run from a VM, so the first “hop” is to the laptop running the VM (IP 10.0.2.2). Unlike a router, the laptop doesn’t decrement the TTL, so the router listed in the traceroute output as hop 2 (IP 192.168.0.1) is actually responding to packets sent with TTL 1.

b. Subtract the timestamp of the packet sent to host 203.208.172.233 from the timestamp of the corresponding response. How does this compare to the RTT to 203.208.172.233 reported by traceroute? (It should match to the nearest integer number of milliseconds). ___
Hint: You can filter for ICMP TTL exceeded packets with $\text{icmp.code} == 0$.